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While the evidence-based approach of science is lauded for intro-
ducing objectivity to processes of investigation, the role of subjectivity 
in science is less often highlighted in scientifi c literature. Nevertheless, 
the scientifi c method comprises at least two components: forming hypoth-
eses, and collecting data to substantiate or refute each hypothesis (Des-
cartes’ 1637 discourse [Olscamp, 1965]). A hypothesis is a conjecture of 
a new theory that derives from, but by defi nition is unproven by, known 
laws, rules, or existing observations. Hypotheses are always made by one 
individual or by a limited group of scientists, and are therefore subjec-
tive—based on the prior experience and processes of reason employed by 
those individuals, rather than solely on objective external process. Such 
subjectivity and concomitant uncertainty lead to competing theories that 
are subsequently pared down as some are proved to be incompatible with 
new observations.

Allowing subjectivity is a positive aspect of the scientifi c method: it 
allows for leaps of faith which occasionally lead to spell-binding propos-
als that prove to be valid. Some scientifi c studies have analyzed how sub-
jectivity contributes to the progression of ideas, and some of those studies 
are in the geological sciences (Aspinall, 2010). Bond et al. (2012, p. 75 in 
this issue of Geology) showed a computer-generated seismic cross section, 
created from an underlying (invented) geological model, to several hun-
dred individual geologists. The model included structural deformation and 
inversion of faults, with pre-, syn- and post-deformational stratigraphic 
development. Each geologist interpreted the cross section to hypothesize 
a geological model; they also provided information about their academic 
and professional background. Concepts employed by each geologist were 
categorized (e.g., as dominantly diapirism, thrusting, extension, inversion, 
etc.) and analyzed statistically. Importantly, the geologists’ background 
and experience correlated signifi cantly with their likelihood of having 
invoked the correct concepts. Those with Master’s or doctoral (Ph.D.) 
degrees were most likely to make a successful interpretation. Analyz-
ing the techniques employed (e.g., feature identifi cation, horizon pick-
ing, annotation, evolutionary sketches), successful interpretations were 
most often obtained from using multiple techniques, particularly if they 
included evolutionary sketches; academic staff were notably successful 
because they tended to use multiple techniques. Thus, variations in prior 
experience are shown to bias the formation of evidence-based geological 
hypotheses.

Such biases in geologists are quite expected as the processes through 
which they develop in experts in any fi eld are well known to cognitive 
psychologists. Biases include over-confi dence, anchoring and adjustment, 
availability, and motivational bias, and the defi nitions of these can be 
found in Kahneman et al. (1982) or O’Hagan et al. (2006). All such biases 
occur in situations of uncertainty (such as when forming hypotheses), 
when various heuristics (rules of thumb) are employed subconsciously.

Bond et al. use large numbers of geologists to identify such biases, 
which is not usually practical in interpretational settings. An alternative 
approach to analyzing bias is to use the theory of Elicitation—how to 
interrogate people in a manner designed to obtain the most reliable infor-
mation (O’Hagan et al., 2006). Elicitation theory is cross-disciplinary, 
combining elements of statistics, cognitive psychology, and the fi eld 

under investigation (here, geology). Structured elicitation methods, and 
even real-time optimization of questions posed during elicitation, have 
been used to assess uncertainty and bias in expert opinions (e.g., Rankey 
and Mitchell, 2003; Curtis and Wood, 2004; Polson et al. 2009; Aspinall, 
2010). In all cases, a facilitator manages the process of elicitation, and the 
entire system of facilitator, experts, and information fl ow may be analyzed 
using statistical techniques (Lindley et al., 1979).

To reduce biases associated with individual experts, information is 
often elicited from groups of experts simultaneously. However, groups of 
experts are subject to additional biases caused by social infl uence, result-
ing in convergence, divergence, or herding behavior (Kahneman et al., 
1982; Baddeley et al., 2004). Polson and Curtis (2010) conducted an 
experiment representing an asset-team environment in the hydrocarbon 
industry, in which a range of experts were asked to assess the potential 
of a prospective reservoir stratum (in their case, for CO2 storage). Four 
experts were asked to interpret existing geological and geophysical data 
to assess the likelihood of the existence of a particular fault, a specifi c 
reservoir stratum, and a sealing cap rock. The experts’ individual levels 
of certainty were quantifi ed three times: days before the group meeting, 
just after the beginning of the meeting, and ~5 min after the end of the 
meeting. During the meeting, the geologists were asked to reach a consen-
sus position on their joint level of certainty through reasoned discussion.

Figure 1 shows the range of group-averaged individual experts’ 
uncertainties in whether the reservoir, seal, and fault exist, and the respec-
tive group consensus positions. Expert opinion changed signifi cantly dur-
ing the process, even in the absence of new information. For case C, the 
group consensus position combined both the most extreme position and 
the highest degree of certainty (the narrowest range). The fi nal positions 
shown in Figure 1 were obtained ~10 min after the fi nal consensus posi-
tion had been agreed, and at this point, one particular geologist was even 
shown to disagree with the consensus to which he had just agreed. In this 
case, there is a clear lack of objectivity in hypothesis formation due to 
group dynamics. However, subjectivity is also shown to be important: the 
consensus position in case C was not adopted by any geologist before 
the meeting—without group dynamics it might not have been considered.

Similar dynamism of opinion was observed in a study by Phillips 
(1999): two sets of 10 experts estimated corrosion time scales of con-
tainers to be used for geological storage of nuclear waste. Even account-
ing for the experts’ own uncertainty estimates, fi nal results from the two 
groups were barely consistent. Also, using a computerized laboratory at 
the University of Edinburgh (UK) that tracks dynamic opinions through-
out any group elicitation session, all studies to date have exhibited similar 
dynamism in the opinions of geoscientifi c experts during discussion and 
scientifi c exchange.

The above studies signifi cantly infl uence the way one should inter-
pret consensus-driven results. Consensus positions clearly may only rep-
resent the group opinion at one instant in time, and may not represent the 
true range of uncertainty about the issue at hand (e.g., Fig. 1C). This is dis-
turbing because consensus is often used in the geosciences. For example, 
the Intergovernmental Panel on Climate Change (IPCC; http://www.ipcc
.ch/) has affected a signifi cant shift in public opinion toward acceptance 
of the anthropogenic origin of relatively rapid, current climatic variations. 
However, IPCC conclusions are all consensus driven—positions agreed 
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between groups of scientists. Group interactions might reduce individual 
biases, such as anchoring and over-confi dence (such biases have neverthe-
less been recognized in IPCC results [Oppenheimer et al., 2007]). How-
ever, the group consensus approach may also introduce dynamic biases 
(recognized by Mastrandrea et al. [2011]), which are more diffi cult to 
detect without tracking the dynamics of opinion.

It is interesting to note that Bayesian methods now enjoy wide-
spread acceptance within the geological and other sciences (Tarantola, 
2005). These inference methods are objective, being governed by math-
ematical laws, yet they explicitly represent (possibly subjective) prior 
information. From the prior position, inferences are formed by assimi-
lating new data in a quantitative, probabilistic manner. Some non-Bayes-
ian methods also allow, for example, qualitative geologists to directly 
infl uence quantitative inferences about the Earth by interacting intui-
tively with the optimization of Earth model parameter values (Boschetti 
and Moresi, 2001; Curtis and Wood 2004). Thus, a range of methods 
explicitly facilitate the use of subjective geological information within 
otherwise objective processes of scientifi c inference.

While Polson and Curtis (2010) and now Bond et al. (2012) show 
clearly that subjectivity affects geologists’ interpretations, either as indi-
viduals or in groups, the existence of subjectivity in forming hypotheses 
does not necessarily imply a lack of scientifi c rigour. When recognized 
explicitly, subjectivity may properly infl uence scientifi c inferences, and 
can also lead to novel hypotheses. Scientists should therefore not be 
ashamed of subjectivity, but we should strive to develop methods to quan-
tify and sometimes to reduce its effects.
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Figure 1. Evolution of expert opinion during the structured group elicitation process of Polson and Curtis (2010). Horizontal axes: estimated 
probability of the existence of a specifi c reservoir (A), cap rock (B), and fault (C). Vertical axes show expert opinion at four points in time. 
Thin dashed lines show average range of experts’ opinions. Bold solid lines show the group consensus on the range of probabilities, 
representing the decision point in a usual committee of experts.


