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Basic Formulations of the Scaled Boundary
Finite Element Method

2.1 Introduction

This chapter presents the basic concepts of the scaled boundary finite element
method for two-dimensional stress analysis. The theoretical formulation and imple-
mentation are mostly limited to those of simplistic polygonal S-elements (see, for
example, Figure 1.3). The most basic 2-node line element (see Figure I.1) is used for
the discretization of the edges of an S-element. The scaled boundary finite element
formulation for an S-element is developed. From the point of view of development
process, this is equivalent to the development of element formulation in the finite
element method.

2.2 Modelling of Geometry in Scaled Boundary Coordinates

A key concept of the scaled boundary finite element method is to devise the scaled
boundary coordinates to describe the geometry of an S-domain. The role of the scaled
boundary coordinates is similar to that of the reference coordinates in the isoparamet-
ric finite elements. This coordinate system involves the discretization of the boundary
of the S-domain, leading to an S-element. This allows a semi-analytical solution to be
obtained.

Same as in the finite element method, the directions of displacements and forces
remain in the Cartesian coordinates so that the assembly of S-elements can be con-
veniently formulated to satisfy the compatibility and the equilibrium.

2.2.1 S-domains: Scaling Requirement on Geometry, Scaling Centre
and Scaling of Boundary

In this section, only the geometry of an S-domain is addressed. To guarantee that the
so-called scaled boundary transformation introduced in Section 2.2.3 below is unique,
the geometry of the S-domain has to meet a so-called scaling requirement: there exists a
region from which every point on the boundary is directly visible, or in other words, there
exists a region that has direct line of sight of the whole boundary. The scaling requirement
can also be stated inversely as that there exists a region that is directly visible from any
point on the boundary. A point called the scaling centre is selected in this region.
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The scaling requirement on the geometry of a domain is illustrated in Figure 2.1. The
domain V shown in Figure 2.1a satisfies the scaling requirement as a point from where
every point on the boundary S (the bold solid line) is directly visible can be identified.
Such a point is selected as the scaling centre O. The direct lines of sight from the scaling
centre to the corners of the domain are drawn as dashed lines. Note that the boundary
does not have to be convex and the number of edges is not limited. Figure 2.1b shows
an example of a domain that does not satisfy the scaling requirement. No point can be
found that has direct visibility of the three points A, B and C on the boundary § at the
same time. To apply the scaled boundary finite element method, such a domain has to
be subdivided into several smaller ones that satisfy the scaling requirement.

In the scaled boundary finite element method, an S-domain is described by continu-
ously scaling its boundary with respect to a scaling centre. Figure 2.2 depicts the oper-
ation to generate the S-domain V by scaling its boundary S. When the boundary is
scaled by a factor less than 1, an internal curve similar to the boundary is obtained.
Two such internal curves corresponding to scaling factors 0.8 and 0.6, respectively, are
shown in Figure 2.2 as thin solid lines. When the scaling is performed continuously from
the boundary (with a scaling factor 1) to the scaling centre (with a scaling factor 0), the
whole domain is covered. This process is analogous to covering a surface by continu-
ously moving a line. When the scaling requirement is satisfied, a point in the domain is
covered once and once only in the scaling process.

The scaling operation to describe an S-domain is addressed in mathematical terms.
As shown in Figure 2.3, a system of Cartesian coordinates %, y is defined. Its origin is
selected at the scaling centre O. This choice simplifies the derivation of equations, and
does not lead to loss of generality. The position vector of a point (x, y) in the S-domain

Figure 2.1 lllustration of the scaling requirement. (a) A bounded domain V that satisfies the scaling
requirement. The scaling centre is indicated by the marker @& from where every point on the boundary
S (bold solid line) is directly visible. The dashed lines show examples of direct lines of sight. Such a
domain will be referred to as an S-domain. (b) A bounded domain V that does not satisfy the scaling
requirement.

Figure 2.2 Representation of an S-domain V by scaling its
boundary S with respect to the scaling centre O selected inside
the domain. The dash lines indicate the lines of sight from the
scaling centre. The thin lines indicate two typical internal curves
resulting from scaling the boundary.
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Figure 2.3 (a) Scaling of the boundary of an S-domain using the radial coordinate & (£ = 1 at the
boundary and & = 0 at the scaling centre) as the scaling factor. (b) An S-domain is transformed to a
unit circular domain in the system of radial coordinate & and angular coordinate 6.

(Figure 2.3a) is expressed as
r = xi+yj (2.1)

where i and j are unit vectors along the x and y directions, respectively. The angular
coordinate (i.e. the angle between the x—axis and the vector r) is denoted as 6.

Along the radial line connecting the scaling centre and the point (x, ¥), the point (x,, ¥,,)
on the boundary is addressed. The point (x, y) and the point (x,, y,) have the same angu-
lar coordinate 6. The position vector r,, is expressed as

When the scaling requirement is satisfied, no two points on the boundary have the
same value of angular coordinate 8. The boundary can be defined by a single-valued
function r,(0). It is often more flexible to describe a boundary of complex shape by two
single-valued parametric functions x,(0) and y,(6)

x;, = x,(0) (2.3a)
Yy = ¥p(60) (2.3b)

where the angular coordinate 6 is used as the parametric variable. This parametric
description will be used in the scaled boundary coordinates (Section 2.2.3).

A radial coordinate £ emanating from the scaling centre O is introduced as the scaling
factor (Figure 2.3a). The radial coordinate £ is selected as & = 0 at the scaling centre and
& = 1 on the boundary. The scaling requirement ensures that the radial coordinate & and
the angular coordinate 6 are not parallel.

As shown in Figure 2.3a, scaling the point (x,,y,) to the scaling centre O generates
a radial line connecting the two points and passing through the point (x, ). The point
(%, y) can thus by obtained by scaling the point (x,, y,) on the boundary with the radial
coordinate £ as

r=¢r, (2.4)
The scaling operation is expressed in the Cartesian coordinates as

x = éx, (2.52)

Y =& (2.5b)



34

The Scaled Boundary Finite Element Method

Equation (2.5) can be regarded as a coordinate transformation between (x, ¥) and (&, 6).
As shown in Figure 2.3b, an S-domain is transformed into a unit circular domain in the
system of radial coordinate £ and angular coordinate 0. The boundary is specified by
a constant radial coordinate & = 1. This choice simplifies the enforcement of boundary
conditions in solving differential equations, much like the use of polar coordinates in the
solution of problems on circular domains. In fact, the coordinate system (&, 0) resem-
bles the polar coordinates r and . Using Eq. (2.5), the radial coordinate r is written as

r=¢&r,=E\/% + ) (2.6a)

r, =1/% + ) (2.6b)

is the radial coordinate on boundary. The angular coordinate 6 is expressed as

where

0 = arctan % (2.6¢)
Xp
with the principal value —z < 6 < 7. The scaling requirement guarantees that the angle
0 is a unique valued function along the boundary.
It is worthwhile noting the following remarks on the scaling requirement and the
S-domain.

1) Star-shaped domains in mathematics (Stewart and Tall, 1983) are S-domains.
A domain is star-shaped if there exists a point such that a straight line segment
connecting this point with any other point in the domain is contained in the domain.
In two and three dimensions, this criterion is equivalent to having direct lines
of sight of the whole boundary from a point. Figure 2.4a depicts an example of
star-shaped polygonal domains in computational geometry (Preparata and Shamos,
1985). The lines of sight are shown by dashed lines. The set of points that have direct
line of sight of the whole boundary is called the kernel of the star-shaped polygon
domain as shown by the shaded area in Figure 2.4b. Therefore, a star-shaped domain
meets the scaling requirement and the scaling centre is selected within the kernel.
A star-shaped domain is not necessarily convex. As shown in Figure 2.4, some parts
of the boundary can be concave. All convex polygons are star-shaped. A convex

Figure 2.4 Star-shaped polygonal domain. (a) The dashed lines are the straight line segments that
connect a point with the vortices of the polygonal domain. (b) The shaded region shows the kernel of
the star-shaped polygonal domain.
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Figure 2.5 An unbounded S-domain. The unbounded
domain V is covered by scaling its boundary S with
respect to the scaling centre O selected outside of the
domain. The thin lines indicate internal curves resulting
from scaling the boundary with a factor larger than 1.
The dashed lines indicate the lines of sight from the
scaling centre.

polygon coincides with its own kernel, i.e. the whole boundary of a convex polygon

is directly visible from any point in the polygon.

On the other hand, an S-domain may not be a star-shaped domain. Some of these
cases are given below.

2) The scaled boundary technique is also applicable to the modelling of unbounded
(or exterior) domains. An unbounded domain is depicted in Figure 2.5. The scaling
centre O is selected outside of the unbounded domain. Since the whole boundary
is directly visible from the scaling centre, the unbounded domain is an S-domain,
but not a star-shaped domain. The unbounded S-domain V is represented by scaling
its boundary S with a scaling factor varying continuously from 1 at the boundary to
infinity. The two internal curves obtained by scaling the boundary with the scaling
factors 1.1 and 1.2, respectively, are shown in Figure 2.5 as thin solid lines.

3) Two useful extensions to the above base cases of forming S-domains by scaling their
boundaries are described briefly in the following and will be addressed in detail in
the subsequent chapters.

a) The first is the modelling of problems with a straight edge crack and material
interfaces as illustrated in Figure 2.6. Figure 2.6a is an edge-cracked square. The
scaling centre is selected at the crack tip. The two straight crack faces passing
through the scaling centre are not included in the scaling process and are denoted
as ‘side-face! The rest of the boundary is referred to as the ‘defining curve; which
is not closed. The S-domain of the cracked square is obtained by continuously
scaling the defining curve with respect to the scaling centre. The side-faces (crack
faces) are formed in the scaling process by the two ends of the defining curve.

A corner formed by three materials occupying the domains V;, V, and V; is
shown in Figure 2.6b. The scaling centre is selected at the vertex. The defining
curves for the three domains are plotted by bold solid lines. They are jointed
at their common ends denoted by circles. The three domains are obtained by
continuously scaling the defining curves and are modelled as one S-domain. The
side-faces and material interfaces are formed in the scaling process by the ends of
the defining curves.

As will be demonstrated in Example 3.9 and in Chapter 10, the scaled bound-
ary finite element method leads to a semi-analytical solution of the strain/stress
singularity at the crack tip and multi-material corners. Accurate results can be
obtained without a local mesh refinement or special element, which represents
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Figure 2.6 (a) Modelling of an edge-cracked square by scaling the defining curve. The two side-faces
(crack faces) are formed by scaling the two ends of the defining curve. (b) Modelling of a
three-material corner by scaling the defining curves. The two side-faces and the material interfaces are
formed by scaling the ends of the defining curves.

b)

one of the advantages of the scaled boundary finite element method in computa-
tional fracture mechanics.

The second extension is the modelling of a half-plane with an excavation as shown
in Figure 2.7. The problem domain is modelled as one S-domain. The scaling cen-
tre is selected outside of the domain and on the extension of the free surface of the
half-plane. The free surface is not included in the scaling process and denoted as
‘side-face’ The excavation line is referred to as the defining curve and scaled with
respect to the scaling centre. The S-domain with the two side-faces represent-
ing the free surface are formed by scaling the defining curve. A semi-analytical
solution satisfying the boundary conditions at infinity can be obtained without
discretizing the half-plane.

4) The visibility of the boundary from the scaling centre is determined by the angle
between the boundary and the line of sight from the scaling centre. When the angle
is aright angle, the visibility is the highest. When the angle is very small (or very close
to 180°) like those ones shaded in Figure 2.8a, the low visibility of the boundary from
the scaling centre will affect the numerical accuracy of the scaled boundary trans-
formation and the scaled boundary finite element analysis. This is analogous to the
effect of elements with small internal angles on the accuracy of a finite element analy-
sis. To improve the visibility of the boundary, i.e. to avoid very small angles between

Side-face 0 Side-face

Defining curve

Figure 2.7 Modelling of an excavation in a half-plane as an S-domain by scaling the defining curve.
The two side-faces (free surface) are formed by scaling the two ends of the defining curve.
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(a) (b)

Figure 2.8 (a) An S-domain with small angles between the boundary and the lines of sight from the
scaling centre, as indicated by the shaded areas, leading to low visibility of the boundary. (b)
Subdivision of the S-domain to increase angles between the boundary and the lines of sight from the
scaling centre and, thus, the visibility of boundary.

the lines of sight and the boundary, an S-domain can be subdivided as shown in
Figure 2.8b.

2.2.2 S-elements: Boundary Discretization of S-domains

In practical applications of the scaled boundary finite element method, the boundary
of an S-domain can be any general shape satisfying the scaling requirement. Gen-
erally speaking, the solution of a problem is only feasible in semi-analytical form
with a piece-wise discretized description of the boundary. As shown in Figure 2.9,
the boundary S of the S-domain V is divided into line elements. The large dots indicate
the end nodes of elements. The reference coordinate of the line elements follows the
counter-clockwise direction around the scaling centre (i.e. the right-hand rule). The
S-domain and its boundary discretization define an S-element. The solution inside
the S-element will be obtained analytically, leading to a semi-analytical procedure.

Standard isoparametric formulations of the finite element method apply to describe
the geometry of the elements on the boundary. The Cartesian coordinates of the nodes
of an element on boundary are arranged in {x}, {y}. The geometry and displacements
of the isoparametric line element are interpolated using the same shape functions from
their nodal values.

A 2-node element is shown in Figure 2.10a. It is the simplest element and will be
used in all the examples in this chapter. The nodal coordinate vectors of the element

Figure 2.9 An S-element obtained by discretizing the
boundary S of S-domain V. Displacement-based elements of
different orders are used. The direction of the elements has to
follow the counter-clockwise direction around the scaling
centre.
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Figure 2.10 Two-node line element on boundary. The element direction must follow the
counter-clockwise direction around the scaling centre. (a) Physical element. A point (x,, y,) on the
element is obtained by interpolating nodal coordinates, see Eq. (2.17). (b) Parent element in natural
coordinate . (c) Shape functions in natural coordinate #.

are equal to

{x} =[x = ]T (2.7a)
Y=y »nl" (2.7b)
The coordinates of an arbitrary point on the element (on the boundary) are denoted as

Xbr V-

The parent element in the natural coordinate # (¢ has been used for the radial coor-
dinate) is illustrated in Figure 2.10b. It has a length of 2 units. The natural coordinates
of nodes 1 and 2 are equal to —1 and +1, respectively. The linear interpolation of, for
example, the x—coordinate on the 2-node element is expressed as

x,(M) = ag +ayn (2.8)

The interpolation constants a, and a, are determined by formulating Eq. (2.8) at the two
nodes, leading to

x =x,(-1)=ay+a, x(-1) (2.9a)
Xy =x,(+1) = ag+a, X (+1) (2.9b)
The solution of Eq. (2.9) is expressed as
ay = %(xl + %) (2.10a)
a, = %(xz — %) (2.10b)
Using Eq. (2.10), Eq. (2.8) is written as
1 1 1 1
x,(n) = E(xl +x,) + §(x2 —x)n = 5(1 —nx; + 5(1 + 1)xy (2.11)
The interpolation in Eq. 2.11 is expressed in terms of the nodal coordinates as
x,(n) = Ny(mx; + Ny(n)x, (2.12)
where the shape functions are equal to
1
Ny(m) = 5(1 )] (2.13a)

Ny(n) = %(1 + 1) (2.13b)
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The two shape functions N () and N, (n) are plotted in Figure 2.10c. It is easy to verify
that the shape functions possess the following properties:

e Kronecker delta functions

1 when i=j
Nim) =6, = =/ (2.14)
0 when i#j
e Partition of unity
ZNi(”) =1 (2.15)

The shape functions are expressed in matrix form as

INGDI = [ 30 =m) 2+ 216)
The interpolation of coordinate x,, in Eq. (2.12) and, similarly, the interpolation of coor-
dinate y, are written as

x;, = [N1{x} (2.17a)

¥, = [IN{y} (2.17b)

where, for conciseness, the arguments n have been omitted from the coordinates
x;, = x,(n), ¥, = x,(n) and the shape functions [N] = [N(n)].

A 3-node line element is shown Figure 2.11a. The nodal coordinate vectors are
expressed as

{x} =[x, %, x31" (2.18a)
Wy=10yn 5 51" (2.18b)

The parent element in the natural coordinate # is shown in Figure 2.11b. The shape func-
tions are equal to

[ L,a-mione L
NI = | S50 =m) 1= S0+ | (219)

and plotted in Figure 2.10c. They have the properties of the Kronecker delta and satisfy
the partition of unity.

(a) (b)

(x3, y3)
(Xb» ¥b) -1 0 +1 -
———o—————— O
(X2, y2) 1 2 3

(X1, 1)

N1: ¥4 N2: LB NS: o———¢ l

Figure 2.11 Three-node line element on boundary. The element direction must follow the
counter-clockwise direction around the scaling centre. (a) Physical element. A point (x,, y,) on the
element is obtained by interpolating nodal coordinates, see Eq. (2.17). (b) Parent element in natural
coordinate 7. (c) Shape functions in natural coordinate 7.
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Figure 2.12 A quadtree mesh
illustrating the simplicity of mesh
generation and remeshing using

A B S-elements. This mesh of S-elements
c satisfies displacement compatibility
requirement.

The only requirement for the boundary discretization as shown in Figure 2.9 is that
the displacement is continuous at the end nodes where the elements are connected. As
long as this requirement is satisfied, the elements can be of any type and order. They can
also be mixed together in one S-element. In addition, one edge of an S-element can have
more than one element As one edge is shared by two S-elements only, compatibility is
automatically satisfied. Practically, any displacement-based elements can be used.

The fact that an S-element allows a flexible boundary discretization reduces signifi-
cantly the burden on conventional finite element mesh generation and remeshing. This
is demonstrated by the simple quadtree mesh shown in Figure 2.12. A quadtree mesh
is highly efficient and suitable for adaptive analysis, but its application in finite ele-
ment analysis is greatly hindered by the presence of hanging nodes causing displace-
ment incompatibility (Zienkiewicz et al., 2005). When a quadtree cell is modelled as
one S-element in the scaled boundary finite element method, this difficulty is avoided
by subdividing an edge at a hanging node into two or more line elements. For example,
the lower and right edges of S-element A in Figure 2.12 are divided into two 2-node line
elements so that the compatibility with the adjacent S-elements of a smaller size is satis-
fied. Similarly, the left edge of S-element B is divided into three 2-node line elements by
the two hanging nodes. S-elements C and D depict the mesh refinement by increasing
the element order (p-refinement). The compatibility with adjacent S-elements is satis-
fied automatically on the common edges. The refinement of one S-element will affect at
most the four adjacent S-elements.

2.2.3 Scaled Boundary Transformation

As explained in Section 2.2.1, the S-domain is described by scaling the boundary. For
the discretized boundary of an S-element, the scaling operation applies to individual ele-
ments. As shown in Figure 2.13, the line element S¢ covers a sector V¢ of the S-element
when it is scaled towards the scaling centre. The S-element is the assembly of all the
sectors resulting from scaling the individual elements on the boundary. Therefore, one
sector covered by the scaling of a single line element is addressed in the derivation of the
scaled boundary finite element equation. The equations for the S-element are obtained
by enforcing the compatibility and equilibrium between the sectors.

2.2.3.1 Scaled Boundary Coordinates

The boundary scaling discussed in Section 2.2.1 is applied to a single line element on the
boundary. The process is depicted in Figure 2.14 using a 3-node element. Scaling the
point (x;,7,) on the line element leads to a radial line. The coordinates of a point (x, y)
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Figure 2.13 Representation of an S-element by scaling the line
elements on boundary.

Figure 2.14 Scaled boundary coordinates defined by scaling a line element at the boundary.

along the radial line and inside the domain are obtained by substituting Eq. (2.17) into
Eq. (2.5)

x = E[N(m{x} (2.20a)
y=¢&INmHy} (2.20b)

&, n are called the scaled boundary coordinates in two dimensions. £ is a (dimensionless)
radial coordinate. 7 is the circumferential coordinate. They form a right-hand coordinate
system. Equation (2.20) defines the scaled boundary transformation, which transforms
the coordinates between x, y and &, 5. The scaling requirement ensures the uniqueness
of the transformation.

The scaled boundary transformation can be regarded as a semi-analytical approach
to transform an S-element into a circular domain. For example, the boundary S of the
S-element V' in Figure 2.13 is transformed into a circle described by a constant radial
coordinate ¢ = 1 as illustrated in Figure 2.15 (see also Figure 2.3). The S-element is spec-
ifiedby0 <& < 1.

The circumferential direction, parallel to the boundary, around the scaling centre O is
described by the element number of the scaled element and the local coordinate # as in
one-dimensional finite elements. A straight line passing through the scaling centre O in
x, y coordinates remains as a straight line and is described by a constant #. The angular

41
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Figure 2.15 Representation of the polygonal domain
shown in Figure 2.13 in the scaled boundary coordinates.

coordinate 0 in Eq. (2.6¢) is expressed as a function of the circumferential coordinate n

¥p(1)
x,(n)

which is independent of the radial coordinate £. Since every point on the boundary of
an S-domain is directly visible, the function 6(») is single-valued. The element number
and the circumferential coordinate # of the element can be regarded as a discrete rep-
resentation of the angular coordinate 8. An element on the boundary in Figure 2.13 is
transformed into an arc defined by ¢ = 1 and —1 < 5# < 1 in Figure 2.15. The part of the
domain covered by scaling an element on the boundary in Figure 2.13 is a sector defined
by 0 < ¢ <1and -1 < < 1in Figure 2.15.

0(n) = arctan (2.21)

2.2.3.2 Coordinate Transformation of Partial Derivatives

The scaled boundary transformation in Eq. (2.20) is similar to the coordinate transfor-
mation in isoparametric finite elements (Cook et al., 2002; Zienkiewicz et al., 2005). The
function £[N(n)] is equivalent to the shape functions of an isoparametric finite element
from the viewpoint of coordinate transformation. The procedure for coordinate trans-
formation in the formulation of isoparametric finite elements is followed to perform the
scaled boundary transformation.

The transformation of partial derivatives of the spatial dimensions is addressed. In
the governing differential equations (Section A.2 on page 454), the displacement field
is expressed in the Cartesian coordinates x and y. The partial derivatives with respect to x
and y are required. In the scaled boundary finite element method (as in the isoparametric
finite element formulation), the displacement field is written in the scaled boundary
coordinates £ and 7 (see Eq. (2.78) in Section 2.4). The partial derivatives with respect
to the Cartesian coordinates x and y are not available explicitly and are obtained from
those with respect to the scaled boundary coordinates & and .

Applying the chain rule, the partial differential operators with respect to the scaled

boundary coordinates & and # are expressed as!
9O _ 90 00
o o0x o0& 0y oE
0 _00x, 00

—_ = + —
on  0xdn  0yon

(2.22a)

(2.22b)

1 More details of the derivation of the transformation of spatial derivative are presented in Section 6.4 for
the three-dimensional case.
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It is expressed in the matrix form as

2] (2
IS b—pnq 9% 2.23
5 Ul 9 (2.23)
on J ay
with the Jacobian matrix defined as
- ESEr 2.24
Ul N ( )

A comma followed by a subscript is used to denote partial differentiation with respect
to the variable in the subscript. The derivatives with respects to x, y are transformed into
those with respect to &, 5 by inverting Eq. (2.23), resulting in

9 9
ox \ _ 1) 0 2.25
9 Ul 5 (2.25)
dy on

The partial derivatives in the Jacobian matrix (Eq. (2.24)) are obtained from Eq. (2.20)
(or equivalently Egs. (2.5) and (2.17)) as

%, = x, = [N]{x} (2.26a)
x,, = &x,, = EINT,, {x} (2.26b)
Yse =9, = [Ny} (2.26¢)
Yoy = &b,y = EIN1,, {7} (2.26d)
Substituting Eq. (2.26) into Eq. (2.24) and separating the coordinates ¢ from # yields
U1 = diag(1, O] (2:27)
where [/,] is the Jacobian matrix at the boundary (£ = 1)
Xp Vb
= 2.28
Us] [xbw Vb ] ( )

It is a function of n and depends on the geometry of the element only. Substituting
Eq. (2.27) into Eq. (2.25) results in

9 9
ox L—,17q % (2.29)
9 10
dy &on
The inverse of the Jacobian at the boundary [/,] is written as
- L Yoy =
U, = — [ 4 (2.30)
b Uhl _xb,n X}

The determinant of [J,] is expressed as

Upl = %525, = Yo% (2.31)
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Substituting Eq. (2.30) into Eq. (2.29) results in the transformation of the differential
operators

ox :L{yb,n}iJrLl{—yb}i (2.32)
09 Upl U —%by J 05 1 & L % ) on

The partial derivatives with respect to £ and # are separated to different terms.

2.2.3.3 Geometrical Properties in Scaled Boundary Coordinates
The geometrical properties of an S-element, which are required for the derivation of the
scaled boundary finite element equation in the subsequent sections, are formulated in
the scaled boundary coordinates.

The boundary of the S-element is considered. The part of the boundary represented
by aline element is depicted in Figure 2.14. The position vector of a point (x,, y,,) is given
in Eq. (2.2). Its tangential vector is expressed as

L, = Xp,0+ 9,0 (2.33)

It is shown that the determinant of the Jacobian on boundary, |/,| in Eq. (2.31), is equal
to the area of the parallelogram formed by vectorsr, and r,,

1 1 k
e xr, [=|% y O
Xy Yoy O
=% Vbyn — Yo¥by
=/, (2.34)

where k is the unit vector along z (perpendicular to x — y plane) direction. The vector
r), represents the line of sight from the scaling centre to the point (x,, y,) and the vector
r,,, the tangential direction of the boundary. When the scaling requirement is met, the
area of the parallelogram will not be equal to 0. Since the scaled boundary coordinate
system follows the right-hand rule, |J,| is always positive and the Jacobian matrix [J,] is
invertible. The scaled boundary transformation is thus well defined. In a scaled boundary
finite element analysis, the angle between the vector r, and vector r, , should not be too
small (Figure 2.8) so that the determinant |/, | is not close to 0 and the Jacobian matrix
[J,] is well-conditioned.

A sector covered by scaling an element at the boundary as depicted in Figure 2.16 is
considered. Several coordinate curves with constant values of scaled boundary coordi-
nates £ and 7 are plotted in Figure 2.16. Those with constant values of the radial coor-
dinate &, denoted as S,, are shown as solid lines, and these with constant values of the
circumferential coordinate #, denoted as S, are shown as dashed lines.

A coordinate curve S, with a constant £ is considered. Its tangential vector r,,, shown
in Figure 2.16, is equal to the derivative of the position vector (Eq. (2.1)) with respect to
n. Using Eq. (2.4), it is written as

r,,=dr,, (2.35)
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Figure 2.16 A sector of an S-element covered by scaling an element at the boundary.

wherer, , (Eq. (2.33)) is the tangential vector at the boundary (¢ = 1). The magnitude of
the tangential vector r,, (Eq. (2.35)) is expressed as

r,, | = &Iyl (2.36)
where the magnitude of the tangential vector at the boundary |r,, | (Eq. (2.33)) is equal
to

0,0 =V (3,)"+ ()" (2.37)
An infinitesimal length on S, is equal to (Eq. (2.36))

as, = Ir., ldn = £|x,,|dn (2.38)
Substituting Eq. (2.33) into Eq. (2.35) results in

r?y’ = éxb,r]i + éyb,r]j (2'39)

which can also be obtained directly by differentiating Eq. (2.1) with respect to n and
using Eq. (2.5). The unit outward normal vector n,, shown in Figure 2.16, and the tan-
gential vector of a coordinate curve S, form a right-hand coordinate system. The unit
outward normal vector is obtained using Eq. (2.39) as

_ yb,r] . xb,rl

‘ |rb,r, | |rb,r]|

J (2.40)

It is independent of &, i.e., the unit outward normal vector at a given # is the same for
any coordinate curve S,. For later use, the unit outward normal vector n, is expressed in
matrix form as

=4 = to1 {yb‘”} (2.41)
ncy |rb,n | _xb,n
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A coordinate curve S, with a constant # is a radial line passing through the scaling
centre (Figure 2.16). Its tangential (direction) vector, r,, is obtained from Eq. (2.4) as

r.=r, (2.42)
with the position vector r,, given in Eq. (2.2). It is expressed in the Cartesian coordinate
system as
T, = X, + 9, (2.43)
Its unit outward normal vector n, (Figure 2.16) is expressed as
x
n, = 254 25 (2.44)
Ty T

where r, is the magnitude of the position vector r, (Eq. (2.6b)). For later use, the unit
outward normal vector n, is written in matrix form as

{(n) = { e } _1 { L } (2.45)
n, r, L %,

For infinitesimal changes d&, dn of the scaled boundary coordinates, the signed
infinitesimal volume dV is equal to the magnitude of the cross product of the
infinitesimal increments of the tangential vectors (Egs. (2.39) and (2.43))

dV =|(r, d&) X (r,, dn)|

1 1 k
=| % ¥, 0|dédn
Expy &y O
= EXp Yy — ViXp)dEdn (2.46)

Using Eq. (2.31), Eq. (2.46) is expressed as
4V = £|J,|ddy (2.47)

Note that |/,| is positive.

Example 2.1 Two-node Element: Scaled Boundary Transformation

A 2-node line element with the nodal coordinates (x;, ;) and (x,, y,) is shown in
Figure 2.17. Perform the scaled boundary transformation of sector covered by scaling
this element.

1) Boundary discretization
Note that the nodes are numbered in such a manner that the natural coordinate
of the element (see Figure 2.17) follows the counter-clockwise direction around the
scaling centre O. The nodal coordinates are arranged as

{x} = {2 } (2.482)

_JNn
v} = {J’z } (2.48b)
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Figure 2.17 Scaled boundary coordinate transformation of a 2-node line element.

Substituting the nodal coordinate vectors {x}, {y} and the shape functions in
Eq. (2.16) into Eq. (2.17), the geometry of the line element is given in Cartesian
coordinates by

1 1 _ 1
x, = [N|{x} = 5(1 —mx, + 5(1 +mx, =%+ EAxn (2.492a)
1 1 _ 1
% =INHy} =S =my+ (A +my, =7+ A (249b)
with the abbreviations
Ax =Xy — X (2.50a)
Ay =Y —%N (250]3)
and
= % (%, +x,) (2.51a)
_ 1
y=50+m) (2.51b)

For later use, differentiating Eq. (2.49) leads to

Xy = %Ax (2.52a)
1
Yoy = §Ay (2.52b)

2) Scaled boundary coordinates
Substituting Eq. (2.49) into Eq. (2.5) results in

x=Exy =& <x + %Axn> (2.53a)

y=én=¢(7+34) (253b)
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This equation defines the transformation between the Cartesian coordinates x, y and
the scaled boundary coordinates &, . As shown in Figure 2.17, coordinate curves S,
with constant & are parallel to the line element. Coordinate curves S, with constant
n are radial lines connecting the scaling centre O and the points on the line element.
Coordinate transformation

To obtain the Jacobian matrix defined in Eq. (2.24), the partial derivatives of x, y with
respect to &, n are evaluated from Eq. (2.53)

Ko =X, =X+ %AJI (2.54a)

yf=n=y+%%n (2.54b)

xm=&m=%%§ (2.54¢)

Yoy =Yy = %Ayi (2.54d)
leading to

U1 = diag(1, &J,] (2.55)

where the Jacobian matrix at the boundary is expressed as

1 1
+2A +2A
E+SAn J+ AN
1a, 1A
2 277

Upl = (2.56)

The same result can also be obtained by directly substituting Eq. (2.49) and Eq. (2.52)
into Eq. (2.28). The determinant of the Jacobian matrix on the boundary (Eq. (2.31))
is expressed, after subtracting the second row multiplied with # from the first row,as

Xy
A, A,

1

1
Iyl = 3

=2 (3, -3A,) (2:57)

Using Egs. (2.50) and (2.51), Eq. (2.57) is simplified as

X1 N
X2 Yo

I, = = %(xlyz = %)1) (2.58)

1
2

[J,] is equal to the area of the triangle covered by scaling the 2-node element
(Figure 2.17). To ensure that the Jacobian matrix is well conditioned, small angles
between the boundary and the line of sight from the scaling centre are to be avoided
(Figure 2.8).

The inverse of the Jacobian [J,] (Eq. (2.30)) is expressed as

1 _ 1
—A —\y+=An
Ut =27 (5+38) (2.59)

A
N 56+%Axn

X

N
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It provides the transformation of the partial derivatives in the Cartesian coordinates
to those in the scaled boundary coordinates (Eq. (2.32))

9 1 |
o BN 2RI R A O ) 260)
T a ¥/ d ‘

i |b| le ¢ |b|§ 5C+1Ax'1 n
dy 2 2

Geometry properties of coordinate transformation
The tangential vector of a coordinate curve S, with a constant & (Figure 2.17) is
expressed as (Eq. (2.35) with Egs. (2.33) and (2.52))

r, = %g(Axi +A,) (2.61)
On the boundary (¢ = 1), it is equal to

K, = %(Axi +A,0) (2.62)
The infinitesimal length of S, equals (Eqs. (2.38) and (2.62))

ds, = %5 A7 + Ajdn (2.63)

It is easily verified that integrating over —1 < 5 < +1 leads to the length of a coordi-
nate curve &1/A7 + A7,

Substituting Eq. (2.62) into Eq. (2.40), the unit outward normal vector n, of the coor-
dinate curve S, is expressed as

Ay A
n, = i— T (2.64)
VSIS IRVISENN

The unit outward normal vector n, of a coordinate curve S, is

with %, and y, given in Eq. (2.49) and r,, in Eq. (2.6b). The equations of the unit out-
ward normal vectors n, and n, can be verified by inspecting Figure 2.17.
The infinitesimal area dV is obtained by substituting Eq. (2.58) into Eq. (2.47)

1
dV'= 2@y, = %,9,)EdEdn (2.65)

Integrating Eq. (2.65) over the domain defined by 0 < ¢ < 1and —1 < # < +1 results
in (%9, — x,9,)/2, which is the area of the triangular sector covered by scaling the
2-node element.
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2.3 Governing Equations of Linear Elasticity in Scaled
Boundary Coordinates

The spatial coordinates of governing equations for two-dimensional (2D) linear elasticity
found in Section A.2 are transformed into the scaled boundary coordinates. The direc-
tions of displacement components {«}, and strain components {£} and stress compo-
nents {o} are retained in the original Cartesian coordinate directions. This is analogous
to the procedure for developing isoparametric elements in the standard finite element
method (Cook et al., 2002; Zienkiewicz et al., 2005).

The spatial derivatives are transformed from the Cartesian coordinates x, y into the
scaled boundary coordinates &, 5 in Eq. (2.23). Substituting this equation into the dif-
ferential operator for 2D elasticity (Eq. (A.31)) and grouping the terms according to the
partial derivatives results in

9
ox
0 d 1 0
[L1=| 0 = |=1[b]l=+ =[b,]— (2.66)
oy Yog e on
9 9
| dy  Ox
where the matrices
1 [ yb,i’] 0
[bl] = m 0 —xb,” (2.673)
b | ~*bn by
1 -y 0
b | % b

are introduced. Note that [b,] and [b,] depend only on the geometry of the element
at the boundary and are independent of £. It is easy to verify from Eq. (2.67) that the
following identity between [b,] and [b,] exists

Upl B3],y = =1, 1[61] (2.68)

This will be used later in the derivation of the scaled boundary finite element equation.
Substituting Eq. (2.66) into Eq. (A.5), the strains are expressed in the scaled boundary
coordinates as
0({)u} 4 l[b2] o{u}
¢ ¢ on
The directions of the strain and stress components are in the Cartesian coordinates. The
stress-strain relationship (Eq. (A.11)) and the elasticity matrix [D] are not affected by the
transformation of the spatial coordinates.
The surface tractions on the coordinate curves S, and S, are determined using
Eq. (A.36) and the unit outward normal vectors in the scaled boundary coordinates.
On a coordinate curve S, (parallel to the boundary) with a constant radial coordinate &,

{e} =1b)] (2.69)
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the unit outward normal is given in Eq. (2.41). Replacing 7, and n, in Eq. (A.36) with
n,, and n,, respectively, the surface traction {z,} = {£,(n)} is expressed as

L | 0 —x,
{t.}= . 1 {o} (2.70)
It 1 O Xy iy
Comparing Eq. (2.70) to Eq. (2.67a), it is identified that
Al T
{t.} = —I[b]" {o} (2.71)
|rb,r] |
applies.

Similarly, the surface tractions {z,.} = {¢,(£)} on a coordinate curve S, (a radial line
passing through the scaling centre) are determined by substituting the components of
the unit outward normal vector given in Eq. (2.45) into Eq. (A.36) and leads to

_1(-y» 0 «
{t’}_i[ 0 x _;b]{a} (2.72)

Replacing the matrix on the right-hand side of Eq. (2.72) using Eq. (2.67b) results in
/A

——[b,]"{c} (2.73)
Ty

(%) =

2.4 Semi-analytical Representation of Displacement
and Strain Fields

The equations of equilibrium are expressed by substituting Eq. (2.66) into Eq. (A.10) as

ro{e} 1., oo} _
[b:] o + : [b,] on {0} (2.74)

The displacement field in an S-element is represented semi-analytically in the scaled
boundary finite element method. In the circumferential direction, the solution is given
at discrete nodal points as in 1D finite elements. In the radial direction, the solution is
obtained analytically.

The radial lines passing through the scaling centre O and a node at the boundary as
shown in Figure 2.18a are addressed. The lines are numbered sequentially correspond-
ing to the numbering of nodes at the boundary. Along a radial line i, the circumfer-
ential coordinate # is constant and nodal displacement functions «,,(£) and u;,(¢) are
introduced. They analytically describe the variation of the displacement components.
Their directions are along the Cartesian coordinates x and y. All the nodal displacement
functions of an S-element (Figure 2.18a) are assembled to construct a vector of nodal
displacement functions

(@) = [u,(&) uy (& (&) upy (& oo &) up(© 1T (275)

On the boundary (¢ = 1), the nodal displacement functions are equal to the nodal dis-
placements denoted as {d}

{d} = {u(& = 1)} (2.76)
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(a)

Figure 2.18 Semi-analytical representation of displacement field in an S-element by interpolating
nodal displacement functions element-by-element independently. (a) Displacement functions are
introduced along radial lines connecting the scaling centre and nodes at the boundary. (b)
Displacement field in a sector covered by scaling one line element on boundary. The dashed lines
show the deformed shapes. Displacements along the circumferential direction # are obtained by
interpolating the nodal displacement functions.

The displacement field is obtained by interpolating the displacement functions in the
circumferential direction #.

Similar to the formulation of standard displacement-based finite elements, the
interpolation and other operations are performed element-by-element and inde-
pendently of each other. A sector covered by the scaling of one isoparametric
displacement-based p-th order element at the boundary is illustrated in Figure 2.18b,
where only the two end nodes and one middle node are shown. The nodes are
numbered sequentially from 1 to p+ 1 following the counter-clockwise direction.
The element and a coordinate curve with constant radial coordinates & are plot-
ted. The nodal displacement functions related to all the nodes of this element are
assembled in a vector {u°(§)} = [u (&) u‘iy(z;‘) ”fp+1)x(§) ufpﬂ)y(f)]T, where
the superscript e denotes functions of one element. The displacement functions
() = 11,0 @1 and {u, (O} = [, () ul,, @] at the two end
nodes of the element are depicted by dashed lines in Figure 2.18. The displacement
functions, {u°(£¢)}, of a line element are related to the displacement functions, {#(&)}, of
the S-element via the element connectivity. The assembling of displacement functions
of the line elements to form the displacement functions of the S-element is expressed
as

(@) = Y (u©) 2.77)

where the symbol Z indicates standard finite element assembly of all the line elements

e

at the boundary.

The displacements {u} = {u(&,n)} = [u,(&.n) u,(&, m]7 ata point (&, ) inside a sec-
tor are obtained by interpolating the displacement functions {u°(¢)}. At the specified
value of the radial coordinate &, the displacement functions u{ () and ufy (&), where
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i=1, 2, ..., p+1,are evaluated. The displacements in the x- and y-directions at the
specified circumferential coordinate # are interpolated independently
p+l
u, = uEm) =Y Nt (&) (2.78a)
po
u, = u(&m = Y Nt (&) (2.78b)
i=1

where N; = N;(n7) are the shape functions of the p-th order element. The deformed
shapes of the element and coordinate curve are shown by dashed lines in Figure 2.18b.
Equation (2.78) is expressed in matrix form as

{u} = {u& . n} =N} (2.79)
with
(N 0 N, O ... N, 0
IN,]= 0 N, 0 N, .. 6+ N, (2.80)

Substituting the displacement field in Eq. (2.79) into Eq. (2.69), the strain field {¢} =
{e(&,n)} is expressed in the scaled boundary coordinates as

1

{e} = [b,]IN,{u’ ()} +§[b2][N,,],,, {u®(©)}) (2.81)
The strain-displacement matrices [B;] = [B,(n)] and [B,] = [B,(#)] are introduced

[B,] = [b,][N,] (2.82a)

[B,] = [b,]IN,],, (2.82b)

They depend on only the geometry of the line element. Using Eq. (2.82), the strain field
in Eq. (2.81) is rewritten as

(e} = B, 1w} +§[le{u6<¢>} (2.83)

It is expressed semi-analytically using the displacement functions.
The stress field {c} = {o(&, 1)} follows from Eqs. (A.11) and (2.83) as

{o} =[D] <[31]{ue(€)},5 +é[32]{ue(§)}> (2.84)

The surface tractions on a coordinate curve S, with a constant radial coordinate £ and a
coordinate curve S, with a constant radial coordinate 7 are given in Egs. (2.71) and (2.73),
respectively. Using Eq. (2.84), they can also be expressed in terms of the displacement
functions.

2.5 Derivation of the Scaled Boundary Finite Element
Equation by the Virtual Work Principle

The scaled boundary finite element equation is derived by converting the governing par-
tial differential equations to a weak form in the circumferential direction only. This leads
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to a system of ordinary differential equations with the radial coordinate as the indepen-
dent variable. For a linear elastostatic problem without the presence of any body force,
the scaled boundary finite element equation is a system of homogeneous Euler-Cauchy
ordinary differential equations and can be solved analytically by following standard pro-
cedures (Kreyszig, 2011). The scaled boundary finite element equation can be derived
by applying either the Galerkin weighted residual method (Song and Wolf, 1997) or the
virtual work principle (Deeks and Wolf, 2002d). Other techniques, such as the princi-
ple of stationary potential energy, should also be possible. In this section, the derivation
based on the virtual work principle is presented.

2.5.1 Virtual Displacement and Strain Fields in Scaled Boundary Coordinates

In the principle of virtual work, also known as the principle of virtual displacements,
a virtual displacement field {6u} = {6u(&, n)} = [6u, (&, n), ou, (&, m]7 is postulated.
The visual displacement field satisfies the displacement boundary conditions and does
not alter the stress field and external loads. It is represented analogously to the real dis-
placement field in Section 2.4.

Virtual displacement functions {6#(£)} are introduced on the radial lines connecting
the scaling centre and the nodes at the boundary of the S-element. The value of the
virtual displacement functions at the boundary (¢ = 1) is denoted as

{6d} = {ou(S = 1)} (2.85)

The virtual displacement field {6u} is obtained by interpolating the virtual displace-
ment functions element-by-element as in Eq. (2.79) using the shape functions [N, ] of a
line element.

{ou} =[N, I{6u’(&)} (2.86)

The virtual strain field {6e} = {6e(&, n)} = [6¢,(&, n), 5e,(&, m), 0v,,(&, m]’ pro-
duced by the virtual displacement field is determined in the same way as the real strain
field. For a sector covered by scaling a line element at the boundary (Figure 2.18). Using
Eqgs. (2.86) and (2.69), the virtual strain field is expressed as

{6e} = [B,[{6u’()}.; +%[Bz]{5ue(€)} (2.87)

where [B;] and [B,] are given in Eq. (2.82).

2.5.2 Nodal Force Functions

Corresponding to the nodal displacement functions, the nodal force functions are intro-
duced on the radial lines connecting the scaling centre and the nodes on the boundary
to represent the stress field.

A coordinate curve S, defined by scaling a line element at the boundary with a constant
¢ is shown in Figure 2.16. The normal vector n, (Eq. (2.40)) is the outward normal vector
of the sector covered by scaling the curve S, to the scaling centre O. The surface tractions
{t.} on curve S, resulting from the stress field {c} are given in Eq. (2.71). For the sector
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covered by scaling the line element at the boundary, the nodal force functions {g°(¢)}
are defined as being equivalent in the sense of virtual work to the surface tractions {¢,}

(@) (40} = / (5u)(£,)ds, (2.89)
S,

Substituting the virtual displacement field {6u} (Eq. (2.86)) into Eq. (2.88) and consid-
ering the arbitrariness of the virtual displacement functions {6°u(&)}, the nodal force
functions are expressed as

()} = / [N,17{¢.}dS, (2.89)
s,

Substituting the surface traction (Eq. (2.71)) and the infinitesimal surface dS, (Eq. (2.38))
into Eq. (2.89) yields

A

|rb,n|

+1
{qe(f)}=/ N7 (6,17 {6 }&]r,,, |dn
-1

+1
- / IN,17 15,17 {o}£lJ, ldn (2.90)
-1

Using Eq. (2.82a), Eq. (2.90) is rewritten as

+1
{°(©)}) = 5/ [B,1" {c}|],ldn (2.91)
-1

The nodal force vectors of individual line elements are assembled to form the nodal
force vector of the S-element

4®) = Qg ©) (2.92)

The nodal force functions {g(£)} of the S-element at a specified radial coordinate & are
similar to the nodal forces of an element in the standard finite element method. In par-
ticular, the nodal forces of the S-element (Figure 2.9) are given by {g(£ = 1)}, i.e. the
nodal force functions {g(&)} at the boundary & = 1.

2.5.3 The Scaled Boundary Finite Element Equation

The virtual work principle is applied to a single S-element. A pentagon S-element is
depicted in Figure 2.19 as an example. The boundary of the S-element is discretized with
line elements. The nodal displacements and nodal forces are shown in Figure 2.19a and
Figure 2.19b, respectively. In each sector defined by scaling a line element towards the
scaling centre, the (virtual) displacement and strain fields are described in Section 2.4.
For conciseness in the derivation of the scaled boundary finite element equation, only
concentrated nodal forces are considered in this section (The surface tractions and body
loads are addressed in Sections 3.4.2 and 3.9, respectively.)
The principle of virtual work is expressed for the S-element as

/{56}T{6}dv= {6d}T{F} (2.93)
14
————

u,

€
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Figure 2.19 Nodal displacement and nodal forces of a pentagon S-element. (a) Nodal displacements.
(b) Nodal forces.

where {o} is the stress field, and {F} consists of the nodal forces (Figure 2.19b). The
left-hand side is the virtual increment of internal strain energy, and the right-hand side
the virtual increment of the work done by the external forces.

The virtual increment of the strain energy of the S-element at the left-hand side of
Eq. (2.93) is evaluated sector-by-sector corresponding to the line elements at the bound-
ary. Substituting the virtual strain field in Eq. (2.87) for a sector V¢ into U, in Eq. (2.93)
results in

u =3 /W{fS”e(?)}Q[Bl]T{a}varZ /V c{éue(é)}T[BZ]T{o}édV (2.94)

J/ J

Vv~ ~

u&l Uz 11

The two terms on the right-hand side of this equation are considered separately in the
following.

The first term on the right-hand side of Eq. (2.94) is expressed, using Eq. (2.47) for dV/
in the scaled boundary coordinates, as

1 +1
u, = Z / {6us(©)}; / [B,1"&{o}|],|dndé (2.95)
0 -1
Replacing the summation with the finite element assembly, it is rewritten as
1 +1
u, = / (u@) ¢ / B {0}V dnde (2.96)
0 e J-1

where the assembly of the virtual displacement vector {6u(¢)} of the S-element follows
from Eq. (2.77). Considering Eq. (2.91), Eq. (2.96) is expressed as

1
U, = / {6u(®)}; 2 {g°(©)}d¢ (2.97)
0 e
Introducing the assembly of the nodal force functions in Eq. (2.92) leads to

1
u, = / {6u®); {q(&)}dg (2.98)
0



Basic Formulations of the Scaled Boundary Finite Element Method | 57

Applying integration by parts with respect to & to Eq. (2.98) results in

1
Uy = ({5u(§)}T{q(§)})z, —/ {6u(©)} {q(®).. d& (2.99)
0

At the lower limit & = 0, the first term on the left-hand side vanishes. Considering
Eq. (2.85) at the upper limit of the first term, Eq. (2.99) is rewritten as

1
U, = (547 (g€ = 1)) - / ()T (&) de (2.100)
0

The second term on the right-hand side of Eq. (2.94) is also evaluated sector-by-sector

1 +1
Uy, = Z/O {(Sue(é)}T/1 [B,1" {6 }1],|dndé (2.101)

Replacing the summation with finite element assembly, Eq. (2.101) is expressed as
1 +1
Uy = / (6u@)" Y, / [B,1" {0} 1], ldnde (2.102)
0 s J-1

The virtual increment of the strain energy in Eq. (2.94) is obtained by substituting U,
in Eq. (2.100) and U, ;; in Eq. (2.102) as

1 +1
U, = {sd}"q¢ =1 —/ {ou®)" <{q(§)},g - Z/ [Bz]T{G}I]bldﬂ> dé
0 s J-1

(2.103)

Substituting Eq. (2.103) back into Eq. (2.93), the complete virtual work equation of the
S-element is obtained

1 +1
{6d}Tq(& =1) —/ {su@)’ <{q(§)},§ - Z/ [Bz]T{G}IJbIdn> dé
0 s J-1

= {6d}"{F} (2.104)

This equation is to be satisfied for all admissible {6u(¢)} (on the boundary
{6d} = {6u(é = 1)} in Eq. (2.85) applies) in strong form along the radial direction
&. This yields two conditions. At the boundary (boundary conditions),

{F} ={q( =1} (2.105)
has to hold. In the domain (0 < ¢ < 1), the integrand is set to zero leading to

+1
(@@= / [B,17 (o} 1], ldn (2.106)
s J-1

where the nodal force functions are related to stresses {6} (Eq. (2.91)). This equation can
be regarded as the equations of equilibrium expressed in a weak form in the circum-
ferential direction #. When Eq. (2.106) is satisfied, the virtual increment of the strain
energy, Eq. (2.103) is simply equal to (Eq. 2.105)

U, = {6d}" {q(¢ = 1)} (2.107)

i.e. the work done by the nodal forces at the boundary.
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After replacing the stresses {c} using Eq. (2.84), Egs. (2.91) and (2.106) are expanded
and rearranged as

+1
@y =Y ¢ / [B,17[D] ([Bll{ue@)},g +%[321{ue<@}> 1T, dn (2.108)
e -1

and

¢

respectively. The integrations with respect to # are separated from the nodal displace-
ment functions, which depend on ¢ only. The following coefficient matrices are intro-
duced

+1
@)=, / [B,171D] ([Bl]{ue@},g+1[le{u6(:>}> U, dn (2.109)
o J-1

+1

B = XiE wit (E51= [ BITIDIB Nl (21100)
- -1
+1

E1= DiEE win (51= [ B IR (2.110b)
- -1
+1

E1= YEs v 5= [ B DI (21100)
- -1

It is worthwhile noting that:

1) The coefficient matrices [E,], [E;] and [E,] of the S-element are obtained by assem-
bling the element coefficient matrices [Ej], [E{] and [E7] element-by-element accord-
ing to the element connectivity.

2) The element coefficient matrices are evaluated on the individual line element at the
boundary. They depend on only the geometry of the boundary, as represented by the
line element.

3) The integration can be performed numerically in the same way as the computation
of the stiffness matrix of one-dimensional finite elements. The rules for the choice
of the order of integration quadrature in the conventional finite element method are
equally applicable.

4) The relationship of the element coefficient matrices to the stiffness matrix of a
two-dimensional element is shown in Section 5.2.3, Wolf and Song (1996).

5) Both [E,] and [E,] are symmetric. It is also shown later in Section 6.10.1 that [E,] is
positive definite.

Equations (2.108) and (2.109) are simplified, by using the coefficient matrices in
Eq. (2.110), as

{q(®)} = [EoJe{u(®)}.; +[E 1" {u(®)} (2.111a)
E{q(®)} .. = [EJE{u@®)} +[E 1 {u(&)} (2.111b)

The nodal force functions {g(£)} can be eliminated by substituting Eq. (2.111a) into
Eq. (2.111D) leading to the scaled boundary finite element equation in displacement

[Eg1E{u(&)) e +((Ep] + [Eq]" = [EDE((©)}.; = [E|{w(©)} =0 (2112)

It is a system of second-order ordinary differential equations with the dimensionless
radial coordinate ¢ as the independent variable. In the derivation, the governing partial
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differential equations of linear elasticity are weakened in the circumferential direction
in the manner of the finite element method, while the strong form remains in the radial
direction.

L Example 2.2 Two-node Element: Element Coefficient Matrices

Evaluate the element coefficient matrices and the equivalent nodal forces of the 2-node
element shown in Figure 2.17 in Example 2.1, where the scaled boundary transformation
has been performed.

1) Substituting Eqs. (2.49) and (2.52) into Eq. (2.67) leads to

(6,1 = [C ] (2.113a)
Ifbl
n
[by] = —[C,] — —I[C] (2.113b)
2 Ifbl Il
with the abbreviations
A 0
1 y
[Cl=3| 0 -A, (2.114a)
-A, A,
-5 0
[Cl=] 0 X (2.114b)
By

The matrices [b,] and [b,] can also be obtained by using their definitions in Eq. (2.66)
and the transformation of derivatives from Cartesian coordinates to the scaled
boundary coordinates given in Eq. (2.60) in Example 2.1.

2) Using Eq. (2.16), the shape function matrix (Eq. (2.80)) of the 2-node element is
expressed as

_1[1-n 0 1+n 0

[N”]_z[ 0 1-n O 1+11]

1[1010] 11[—1 0 10]
+

“%2]l0 10 1[T2]l0 -1 0 1 (2.115)

The derivative of the shape function matrix with respect to the natural coordinate #
of the parent element is obtained as

1{-1 0 1 0
[Nu],,,—i[o Lo 1] (2116)

3) Substituting Egs. (2.113), (2.115) and (2.116) into Eq. (2.82), the strain-displacement
matrices are express as

[B] = [b, ][N ]

2III [[CIIC]]+ 2|]| [-IC)] [Cy]] (2.117a)
[B,] = [b,]IN,],,
1
C11¢ 2.117b
2I]l[[z][z]] 2|]|[[][]] ( )
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4) The following abbreviations will be introduced below to simplify nomenclature
1

[Qo] = 2I1I C, 1" [DIIC,] (2.118a)
b

[Q]= 2|]| [T [DIIC,] (2.118b)
b

[Q,]= 2;' L1 [DIIC,] (2.118c¢)

Substituting Eq. (2.117a) into Eq. (2.110a) and using f_+11 1xdy =0, the element
coefficient matrix [E(] is obtained

+1
[ES] = / (B, 17 [DI[B,11],|dn

+1
11 2|]b|[[ Nl 1]] [ ]2|]b|[ Al 1]]|]b| n

+1
+/ -1 1C,1]" D= [-[C,1 [C,1] V,ldn

1 21 2|/|
1[1Q Q] Q] -1Q]] .2
[[QO] [Qo]] x2+5 [ Q] QI | %3
2 [2[Q,] Q)
[[Qo] 2[(20]] (2.1192)
Similarly, the coefficient matrix [Ef] is obtained by substituting Eq. (2.117) into

Eq. (2.110b)

+1
[ES] = / [B,17 [DI[B,11],|dn
-1

LY . .
=/, gyplrlalic [C] IC,1] V,ld
,/_1 2|J,1 [ = 2]] (D] 2|]| [ gLe ]|]b| n

/2|f| [-1c [C]] [D]_[ [Ci] [Ci1] U, ldn

A
-[Q] -1Q] 1 [ [Q,] —[Qo]] 2
= o z
[[QI] [QIJ]X [—[Qo] Q] | *3
1@ -] 1] 1@l -1
‘[ Q1 Q] ] [—[Qo] Q] ] (2.119b)

and the coefficient matrix [E7] by substituting Eq. (2.117b) into Eq. (2.110c)

+1
[ES] = / [B,17[DI[B,]1J,|dn
-1

S .
[1 2|J,1 [ (G 2]] (D] 2|]| [ (G ]] |/, 1dn

+1
n
AL ARTAIDAL
+/_1 2|]b|[ [1][1]][]2|]|[ [C1] [C11] U, ldn
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_1[ [Q,] —[Qz]] x2+1[ [Q,] —[Qo]] o 2
2 3

=2 -1 1Qi 10y Q)
[1Q) -], 1[1Q] -IQ,]
=1-1Q Q)] ]*3[—[001 [Qo]] 21199

The MATLAB code, as a part of the accompanying computer program Platypus, to
compute the coefficient matrix of a 2-node line element is presented in Section 2.6. It is
used in the subsequent sections for the static analysis of 2D problems.

Example 2.3 A square S-element is shown in Figure 2.20. Each edge is modelled
by 1 line element. The dimensions, nodal numbers and the line element numbers (in
circle) are shown in Figure 2.20. The elasticity constants are: Young’s modulus E and
Poisson’s ratio v = 0. Considering the plane stress states, determine the element coeffi-
cient matrices [Ej], [E}] and [ES] for Element 2 using the equations derived for 2-node
line element in Example 2.2.

1) The scaling centre is selected at the centre of the square S-element. The origin of the
Cartesian coordinates is placed at the scaling centre. The nodal coordinates and con-
nectivity of the line elements at the boundary of the S-element are listed in the tables
below. Note that the line elements follow the counter-clockwise direction around the
scaling centre.

Nodal coordinates Element connectivity
Node x(m) y(m) Element Node 1 Node 2
1 -1 -1 1 1 2
2 1 -1 2 2 3
3 1 3 3 4
4 -1 1 4 4 1

2) For Element 2, the coordinates of the two nodes are equal to
x =1 y =-1
%=1 yp=1

Figure 2.20 A square S-element (Unit: meter). A y

®
Y-
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Egs. (2.50) and (2.51) lead to

The determinant of the Jacobian matrix at the boundary (Eq. (2.58)) is equal to
1
|| = 5(1><1—1x(—1))= 1

The following two matrices are obtained from Eq. (2.114)

10 00
[c,1=l0 o|; [c1=(0 1
01 1 0
3) The elasticity matrix in plane stress state is expressed as (Eq. (A.42))
2 00
[D]:g 0 2 0
0 01
4) Using [C,], [C,] and [D] above, Equation (2.118) leads to
2 00 10
[Q0]=2_11 (1)8(1)]5020 00
X 00 1[0 1
E|[2 0 O 10
=2lo o 1[|%0©
4 01
_E[2 0
T 410 1
2 00 1 0
[Q1]=2—11[8(1)(1)]§OZO 0 0
X 00 1[0 1
E|O0 O 1 10
=2]o 2 0|9 ©
4 01
_Efo 1
T 4(0 0
2 0 O0fl0 O
[Qz]=2—11[8‘1) Elo 2 oflo1
X 00 1|1



Basic Formulations of the Scaled Boundary Finite Element Method | 63

The coefficient matrices of Element 2 are obtained using Eq. (2.119) as

4 0 2 0
e E|l0 2 01
El=%12 0 4 o
[0 1 02
[0 -1 0 -1 2 0 -2 0
[Ee]_go 0 0 0f 1 E|O0 1 0 -1
Hm%lo 1 0 1 374]l-2 0 2 0
[0 0 0 0 0 -1 0 1
-2 -3 2 -3
_ElO0 -1 0 1
T 1212 3 -2 3
0 1 0 -1
1 0 -1 0 2 0 =2 0
[Ee]—l—_: 0 2 0 =2 L1 E 0 1 0 -1
27%4(-1 0 1 o0 37412 0 2 0
0 -2 0 2 0 -1 0 1
5 0 -5 0

2.6 Computer Program Platypus: Coefficient Matrices
of an S-element

MATLAB functions for computing the coefficient matrices of an S-element in the com-
puter program Platypus accompanying this book are listed in this section. The use of
the functions is demonstrated by examples. The boundary of the S-element is divided
into 2-node line elements. The equations for computing the element coefficient matri-
ces are obtained by performing the integrations analytically in Example 2.1. The origin
of the coordinates has to be placed at the scaling centre in these functions. This require-
ment can be easily met by a translation of the coordinate system as shown later in
Code List 3.2.

2.6.1 Element Coefficient Matrices of a 2-node Line Element

The function EleCoeff2NodeEle . m computes the element coefficient matrices [E],
[E5] and [E5] of a 2-node line element. It is listed below in Code List 2.1. The function
is documented with comments in the list. The equation numbers in the comments refer
to the equations in the text of this book. Additional explanations and an example to use
this function are provided after the code list.
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Code List 2.1: Element coefficient matrices

1 function [ e0, el, e2, mO0 ] = EleCoeff2NodeEle( xy, mat)

2 %Coefficient matrices of a 2-node line element

3 %

+ % Inputs:

5 % xy (i, :) - coordinates of node i (orgin at scaling centre).

6 % The nodes are numbered locally within

7% each line element

8 % mat - material constants

s % mat.D - elasticity matrix

10 % mat.den - mass density

11 %

12 % Outputs:

13 % e0, el, e2, m0O - element coefficient matrices

14

15 dxy = XY (2, :0) =Xy (L, )7 B e e [A,, Ay], Eq. (2.50)
16 MXY = SUM(XY) /27 0 veeie ittt ettt [%, ¥], Eq. (2.51)
17 a = xy(1,1)*xy(2,2) -xy(2,1)*xy(1,2); % «oveeneuni.. (l=2|]b|,Eq, (2.58)
18 if a < 1.d-10

19 disp(’'negative area (EleCoeff2NodeEle)"’);

20 pause

21 end

22 Cl = 0.5%[ dxy(2) 0; 0 -dxy(1); -dxy(1) dxy(2)1; % ....... Eq. (2.114a)
23 C2 = [-mxy(2) 0; 0 mxy(1l); mxy (1) -mxy(2)]; % ...oovvvnn.. Eq. (2.114b)
20 Q0 = 1/a% (CL'*MAt.D¥CL); M vt Eq. (2.118a)
25 Q1 = 1/a*(C2/*MAt.D¥CL); M vuvvvevnteeeniieeennneeenns Eq. (2.118b)
26 Q2 = 1/a* (C27*Mat.D¥C2); % v ettt Eq. (2.118¢)
27 €0 = 2/3%[2%Q0 Q0; Q0 2%Q0T; W vrrrriiiiiii ., Eq. (2.119a)
2 el = -1/3*[ Q0 -Q0; -Q0 Q0] + [-Q1 -Q1; Q1 Q11; % ...... Eq. (2.119b)
29 €2 = 1/3*[ Q0 -Q0; -Q0 QO] + [ Q2 -Q2; -02 Q21; % ...... Eq. (2.119¢)
30

s % ... mass coefficent matrix, Eq. (3.112)

32 mO0 = a*mat.den/6*[ 2 0 1 0; 02 01; 10 20; 01021];
33
32 end

The inputs are the nodal coordinates (argument xy) of the two nodes of the line ele-
ment and the material properties (argument mat) given by the elasticity matrix (field
D) and mass density (field den). The two nodes are numbered locally within the ele-
ment (Figure 2.10 on page 38) and the direction from node 1 to node 2 has to follow the
counter-clockwise direction around the scaling centre (Figure 2.9). The x and y coordi-
nates of a node are stored as one row, i.e. the first row of xy is [x;, ¥;] and the second
one [x,, ¥,].

The coefficient [MG], which is related to the mass matrix, is also calculated (see
the code starting from Line 31). It is given in Eq. (3.98) for the dynamic analysis in
Section 3.10.
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Example 2.4  Use the function EleCoeff2NodeEle in Code List 2.1 on page 64
to compute the element coefficient matrices [E;], [E;] and [E,] of the four 2-node line
elements in the square S-element in Example 2.3 on page 61. Assume the Young’s mod-
ulus is equal to E = 10 GPa.

The following MATLAB script calls the function EleCoeff2NodeEle to calculate
the coefficient matrices of Element 1

o°

% Compute element coefficient matrices
nodal coordinates of element given as [x1 yl; x2 y2]

oe

xy = [-1 -1; 1 -1] % Element 1

$ xy = [ 1 -1; 1 1] % Element 2
$ xy = [ 11; -1 1] % Element 3
$ xy = [-1 1; -1 -1] % Element 4

oe

elascity matrix (plane stress).

E: Young’s modulus; p: Poisson’s ratio

ElasMtrx = @(E, p) E/(1-p"2)*[1 p 0; p 1 0; 0 0 (1-p)/2];
mat.D = ElasMtrx (10, 0); % E in GPa

mat.den = 2; % mass density in Mg per cubic meter

oe

[ e0, el, e2 ] = EleCoeff2NodeEle( xy, mat)

The above MATLAB
script can be obtained
by scanning the QR-code
to the right.

The coordinates of the 4 nodes and the connectivity of the 4 line elements of the square
S-elementare given in Example 2.3. Nodes 1 and 2 of line element 1 are Nodes 1 (-1, —1)
and 2 (1, —1) of the square S-element, respectively.

The elasticity matrix of the plane stress conditions is calculated by a so-called anony-
mous function ElasMtrx. It takes the Young’s modulus E and Poisson’s ratio p as
inputs. The mass density den is set to zero as the mass matrix is not used in this example.

The MATLAB output is listed below

-1 -1
1 -1
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el =
3.3333 0 1.6667 0
0 6.6667 0 3.3333
1.6667 0 3.3333 0
0 3.3333 0 6.6667
el =
-0.8333 0 0.8333 0
2.5000 -1.6667 2.5000 1.6667
0.8333 0 -0.8333 0
-2.5000 1.6667 -2.5000 -1.6667
e2 =
5.8333 0 -5.8333 0
0 4.1667 0 -4.1667
-5.8333 0 5.8333 0
0 -4.1667 0 4.1667

Element 2 is addressed. Nodes 1 and 2 of Element 2 are Nodes 2 (1, —1) and 3 (1, 1) of
the square S-element, respectively. To obtain the coefficient matrices of Element 2, it is
sufficient to replace the nodal coordinates of Element 1 in the previous MATLAB script
with those of Element 2:

xy = [ 1 -1; 1 1] % Element 2

The MATLAB outputs are as follows:

Xy =
1 -
1 1
el =
6.6667 0 3.3333 0
0 3.3333 0 1.6667
3.3333 0 6.6667 0
0 1.6667 0 3.3333
el =
-1.6667 -2.5000 1.6667 -2.5000
0 -0.8333 0 0.8333
1.6667 2.5000 -1.6667 2.5000
0 0.8333 0 -0.8333
e2 =
4.1667 0 -4.1667 0
0 5.8333 0 -5.8333
-4.1667 0 4.1667 0
0 -5.8333 0 5.8333

Note that the same results of the coefficient matrices in Example 2.3 are obtained.
Similarly, the coefficient matrices of Elements 3 and 4 are obtained by inputting their
nodal coordinates

xy = [ 1 1; -1 1] % Element 3
for Element 3, and
xy = [-1 1; -1 -1] % Element 4

for Element 4. For the sake of brevity, only the result of the matrix [E5], which is used
in the next section to illustrate the assembling process, is given below. The MATLAB
output for Element 3 is



el
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3.3333 0 1.6667 0
0 6.6667 0 3.3333
1.6667 0 3.3333 0
0 3.3333 0 6.6667

and for Element 4 is

el

6.6667 0 3.3333 0
0 3.3333 0 1.6667
3.3333 0 6.6667 0
0 1.6667 0 3.3333

2.6.2 Assembly of Coefficient Matrices of an S-element

The coefficient matrices of an S-element are obtained by assembling those of the line
elements. The process is identical to the assembly of the element stiffness matrices of
one-dimensional elements in the standard finite element method. The MATLAB func-
tion for assembly is listed below in Code List 2.2, followed by further explanations and
an example.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Code List 2.2: Assembly of Coefficient Matrices of an S-element

function [ EO, E1, E2, MO ] = SElementCoeffMtx(xy, conn, mat)
%$Coefficient matrix of an S-element

o° o° o° o° o° o° o° o° o° o° o° o° o°

nd

B3
5

EO zeros (nd, nd) ;

E1l zeros (nd, nd) ;

E2 zeros (nd, nd) ;

MO zeros (nd, nd) ;

for ie = 1:size(conn,1) % .....cvn.... loop over elements at boundary
xyEle = xy(conn(ie,:),:); % ...... nodal coordinates of an element
$ ... getelement coefficient matrices of an element
[ ee0, eel, ee2, em0 ] = EleCoeff2NodeEle (xyEle, mat) ;
$ ... local DOFs (in S-element) of an element
d = reshape([2*conn(ie,:)-1; 2*conn(ie,:)], 1, []);
s ... assemble coefficient matrices of S-element

Inputs:
xy (i, :) - coordinates of node i (orgin at scaling centre)
The nodes are numbered locally within
an S-element starting from 1
conn(ie,:) - local connectivity matrix of line element ie
in the local nodal numbers of an S-element
mat - material constants
mat.D - elasticity matrix
mat.den - mass density
Outputs:
EO, E1, E2 - coefficient matrices of S-element
2*gize(xy,1l); % number of DOFs at boundary (2 DOFs per node)

initializing variables

=

0(d,d) = E0(d,d) + eel;
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31 El1(d,d) = E1(d,d) + eel;
32 E2(d,d) = E2(d,d) + ee2;
33 MO (d,d) = MO(d,d) + emO;
3¢ end

35

36 end

The inputs of this function include the nodal coordinates (argument xy), the con-
nectivity table (argument conn) of the line elements and the same material constants
as in Code List 2.1 on page 64. The coordinates (x;, ¥;) of node i are stored as the i-th
row of the argument xy. The two nodes of a line element are stored as one row of the
argument conn. This function loops over all the line elements to compute element coef-
ficient matrices (by calling the function in Code List 2.1 on page 64) and assembles them
to form the coefficient matrices of the S-element. At each node, two degrees of free-
dom (DOF) are considered. The vector d contains the connectivity between the DOFs
of a 2-node line element and the DOFs of the S-element. It is constructed by the code
on Line 28, which is explained in the following example. The assembling is performed
according to the connectivity of DOFs.

(M Example 2.5 Use the function in Code List 2.2 to compute the coefficient matri-
ces [E,], [E;] and [E,] of the square S-element in Example 2.4 on page 65. Assume the
Young’s modulus is equal to E = 10 GPa and Poisson’s ratio v = 0.

The following MATLAB script calls the function SElementCoef £Mtx to calculate
the coefficient matrices of the S-element.

$% Compute coefficient matrices of square S-element

xy = [-1 -1; 1 -1; 1 1; -1 1]

conn = [1:4; 2:4 11"’

% elascity matrix (plane stress).

% E: Young’s modulus; p: Poisson’s ratio

ElasMtrx = @(E, p) E/(1-p"2)*[1 p 0; p 1 0; 0 0 (1-p)/21;
mat.D = ElasMtrx (10, 0); % E in GPa

mat.den = 2; % mass density in Mg per cubic meter

[ EO, E1, E2 ] = SElementCoeffMtx(xy, conn, mat)

The above MATLAB
script can be obtained
by scanning the QR-code
to the right.
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The nodal coordinates are displayed as

Xy =
-1 -1
1 -1
1 1
-1 1

and the connectivity table as

conn

B wW N R
[EEN RN

The assembling process is detailed for Element 4, which corresponds to ie=4 in the
for-loop. The two nodes of Element 4 is given by

conn(ie, :)
ans =
4 1

The nodal coordinates of an element are extracted from the nodal coordinates of the
S-element (Line 24) as
xyEle =
-1 1
-1 -1

and used to compute the element coefficient matrices (see Example 2.4).

Within an S-element, the DOFs are numbered locally starting from the first node of
the S-element. The two DOFs of the i-th node of the S-element are thus (2i — 1) for u,
and 2i for u,. The connectivity of the DOFs of a line element is constructed in Line 28.
The DOFs for u, and u, of the nodes of the element are formed, respectively, as the first
and second rows of a matrix

[2*conn (ie, :)-1; 2*conn(ie, :)]
ans =

7 1

8 2

It is reshaped column-wise into one row as

d =
7 8 1 2

Line 30 assembles the entries of an element coefficient matrix [E]] to the entries of the
same DOFs in the coefficient matrix [E;] of the S-element according to the connectivity
of the DOFs. For example, EO (d, d) is expanded as:

EO(7,7) EO(7,8) EO(7,1) EO(7,2)
Element4: EO0(d,d) = EO(8,7) EC(8,8) EO0(S8,1) EO(S,2)
EO(1,7) EO(1,8) EO(1,1) EO(1,2)
E0O(2,7) EO0(2,8) EO0(2,1) EO0(2,2)

to which the coefficient matrix [E]] of Element 4 is added to.
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Following the same steps, the connectivity of the DOFs of the other three elements

are obtained as:
Element 1:
Element 2:

Element 3:

d
d
d

3 4]
5 6]
7 8]

Their element coefficient matrices [Ej] are assembled, respectively, to the following
entries of the coefficient matrix of the S-element:

Element 1:

Element 2:

Element 3:

E0(1,1) EO
E0(2,1) EO
E0(3,1) EO
E0(4,1) EO
E0(3,3) EO
E0(4,3) EO
E0(5,3) EO
E0(6,3) EO
E0(5,5) EO
E0(6,5) EO
E0(7,5) EO
E0(8,5) EO

1,2) EO(1
2,2) EO(2
3,2) EO(3
4,2) EO(4
3,4) EO(3
4,4) EO(4
5,4) EO(5
6,4) EO(e6
(5,6) EO(5
(6,6) EO(6
(7,6) EO(7
(8,6) EO(S8

Using the element coefficient matrices [E]] obtained in Example 2.4 on page 65 for the
four elements, the coefficient matrix of the S-element is obtained as

7 10.00
0.00
1.67
0.00
0.00
0.00
3.33

| 0.00

[Eo] =

0.00
10.00
0.00
3.33
0.00
0.00
0.00
1.67

1.67
0.00
10.00
0.00
3.33
0.00
0.00
0.00

0.00 0.00
3.33  0.00
0.00 3.33
10.00 0.00
0.00 10.00
1.67 0.00
0.00 1.67
0.00 0.00

0.00

0.00

0.00

1.67

0.00
10.00
0.00

3.33

3.33

0.00

0.00

0.00

1.67

0.00
10.00
0.00

0.00 T
1.67
0.00
0.00
0.00
3.33
0.00
10.00 |

In the same way, the coefficient matrices [E;] and [E,] of the S-element can be deter-
mined by performing the assembly. For the sake of brevity, the intermediate results are
omitted. Only the final results are provided below:

" —2.50
2.50
0.83

—2.50
0.00
0.00
1.67

| 0.00

[E\] =

2.50 0.83
-2.50 2.50
0.00 -2.50
1.67 -2.50
0.00 1.67
0.00 0.00
—-2.50 0.00
0.83  0.00

0.00 0.00 000 1.67 250 T
1.67 000 0.00 0.00 0.83
-2.50 167 -250 0.00 0.00
-2.50 000 0.83 0.00 0.00
250 =250 250 083 0.00
0.83 2,50 -250 250 1.67
0.00 083 0.00 -2.50 -2.50
0.00 -250 1.67 -2.50 -2.50 ]
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[ 10.00 0.00 -583 0.00 0.00 0.00 —4.17 0.00 ]
0.00 10.00 0.00 -4.17 0.00 0.00 0.00 -5.83
-5.83 0.00 10.00 0.00 -4.17 0.00 0.00 0.00
0.00 -4.17 0.00 10.00 0.00 -5.83 0.00 0.00
0.00 0.00 —-4.17 0.00 1000 0.00 -583 0.00
0.00 0.00 0.00 -583 0.00 10.00 0.00 -4.17
-4.17 0.00 000 0.00 -583 0.00 10.00 0.00

| 0.00 -5.83 0.00 0.00 000 -417 0.00 10.00 |

[E,] =






