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Isogeometric shape optimization has been receiving great attention due to its advantages of 
exact geometry representation and smooth representation of the boundaries. In the present 
study, the optimum shape of a horn speaker was found to minimize the back reflection and 
improve impedance matching. The acoustic field was estimated by isogeometric analysis 
(IGA). Horn reflections are sensitive to the boundary shape and the smooth and non-faceted 
boundary representation in IGA makes it an attractive platform for shape optimization 
of acoustic devices. Teaching-Learning-Based Optimization (TLBO) algorithm was used to 
minimize, the reflection coefficient R, by changing the shape of the horn. The NURBS 
control points defining the design boundary of the horn were selected as the optimization 
design variables. Both single and multi-frequency optimization were performed. The 
objective function values found were considerably lower than those reported in the 
literature. The three-frequency shape optimization was performed successfully for which 
no results were reported in the literature due to the convergence issues. From the results, 
it was shown that the proposed method outperforms previous studies by finding the 
best shape for the horn that results in minimizing the reflection and produce improved 
reflection spectra.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Shape optimization is an interesting and challenging subject in engineering design since it involves performing both 
analysis and optimization simultaneously. The boundary representation of the domain under consideration affects the shape 
optimization results as the shape optimization depends only on the boundary changes. Previously, finite element analy-
sis (FEA) was used to perform analyses required for shape optimization which led to drawbacks such as approximated 
geometry and the occurrence of irregular wiggly optimal shapes. To avoid these wiggly shapes, extra operations such as 
“filtering method”, “parameterization-free method” or so-called “traction method” were used (Bletzinger et al., 2010; Firl et 
al., 2013; Le et al., 2011; Azegami and Takeuchi, 2006). These drawbacks are due to the use of different basis functions for 
geometric modeling and analysis and the use of nodes as design variables (Wall et al., 2008). The employed optimization 
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algorithm also has a considerable impact on shape optimization results. The gradient-based optimization algorithms require 
the computation of complex gradients and suffer from local minima trapping (Farhadinia, 2012).

Isogeometric analysis (IGA) is an alternative computational analysis technique in which the same basis functions used 
for geometric modeling are used to approximate the field variables (Hughes et al., 2005). With the success of IGA as an 
alternative analysis technique, shape optimization using IGA has been applied for various applications. Wall et al. (2008)
performed preliminary studies on isogeometric structural shape optimization. The locations of control points which were 
used to define the CAD model were adopted as design variables during the optimization process yielding promising optimal 
results. Qian (2010) computed full analytical sensitivities to enable the gradient-based isogeometric shape optimization. 
Nagy et al. (2010) studied structural sizing and shape optimization using IGA by considering the spatial location of the 
control points and their corresponding weights as design variables. Qian and Sigmund (2011) performed isogeometric shape 
optimization of topologically complex photonic crystals. Wang et al. (2019b) coupled the extended isogeometric analysis 
(XIGA) with chaotic particle swarm optimization algorithm (CPSO) to perform shape optimization of the structures with 
cutouts. Isogeometric shape optimization has been applied to shell structures. Kiendl et al. (2014) performed isogeometric 
shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Kang and Youn (2016)
performed isogeometric shape optimization of trimmed shells with topologically complex structures. More applications on 
isogeometric shape optimization of shell structures can be found in Bandara and Cirak (2018) and Hirschler et al. (2019).

The usage of control points as design variables leads to some issues like discretization dependency similar to mesh de-
pendency in FEA-based shape optimization. To address the issues of the discretization-dependency of isogeometric shape 
optimization, Wang et al. (2017) proposed normalization approaches. The discretization-independency of the proposed ap-
proaches was verified on various mechanical and thermal problems. Ha et al. (2010) performed T-spline-based isogeometric 
shape optimization. The usage of T-splines reduced the number of degrees of freedom while yielding the same optimum 
design shape. Isogeometric shape optimization was applied to find the optimum shapes for fluid and potential flows, heat 
conduction (Herath et al., 2015; Gillebaart and De Breuker, 2016; Nørtoft and Gravesen, 2013; Yoon et al., 2013), vibrating 
structures (Nagy et al. 2011 and Manh et al. 2011), electromagnetic scattering (Nguyen et al., 2012), functionally graded 
structures (Taheri and Hassani 2014 and Wang et al. 2019a) and other applications described in Ummidivarapu and Voru-
ganti (2017), Wang et al. (2018a), Choi and Cho (2018), Benzaken et al. (2017).

IGA was also coupled with the Boundary Element Method (BEM) to perform shape optimization. The advantage of exact 
boundary discretization favors IGABEM for shape optimization. IGABEM has been applied for acoustic shape optimization 
applications. Liu et al. (2017) applied shape optimization for sound barriers using the isogeometric fast multipole BEM. The 
required acoustic shape sensitivities with respect to control points were computed and the sound pressure minimization was 
selected as the design objective. Chen et al. (2018) performed shape and topology optimization to find the optimum distri-
bution of acoustic absorbing material. Peake et al. (2013) applied extended isogeometric boundary element method (XIBEM) 
to solve two-dimensional Helmholtz problems. The use of XIBEM reduced the overall degrees of freedom approximately by 
40% compared to the traditional BEM mainly due to the reduced system matrices. Simpson et al. (2014) performed acoustic 
IGABEM based on T-splines. The obtained solutions were compared with closed-form solutions and found to be superior. 
Some other applications of shape optimization using IGABEM can be found in Kostas et al. (2017), Sun et al. (2018), Hen-
wood (1993), Dodgen and Khajah (2018). While BEM is very attractive for shape optimization of devices relying on wave 
propagation phenomena it suffers from the increased computational cost due to the dense linear system which limits its 
applications for high-frequency analysis as well as 3D analysis. Another challenge specific to BEM is the necessity to develop 
the analytical solution and deal with possible singularities. This makes IGA/FEM an easier adaptation for such applications 
especially with the recent developments in generating the required meshes. A detailed review of IGABEM, its applications, 
and limitations is presented in Ummidivarapu and Voruganti (2019).

This paper focuses on the study and application of shape optimization to an acoustic horn to transmit an incom-
ing wave as efficiently as possible. Hence, the back reflection which is sensitive to the horn boundary shape should be 
minimized. Minimization of the reflections from an acoustic horn by shape optimization was studied previously. Bängts-
son et al. (2003) performed the shape optimization of the acoustic horn using FEA and the gradient-based Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm. The BFGS method belongs to quasi-Newton methods for which the necessary 
condition for optimality is the gradient to be zero. Both single and multi-frequency optimization were performed. A failed 
case of the three-frequency optimization due to the convergence issue was also reported. Barbieri and Barbieri (2013)
performed the shape optimization of the acoustic horn using FEA and genetic algorithm (GA). The reflection coefficient 
was taken as the objective function. Single and two-frequency optimization were performed and the results obtained were 
compared with those of Bängtsson et al. (2003). Barbieri et al. (2015) performed the optimization of acoustic filters using 
particle swarm optimization (PSO). Problems analyzed involve parametric optimization of mufflers and shape optimization 
of acoustic horns. Morgans et al. (2008) employed a surrogate optimization method namely ‘Efficient Global Optimization’ 
for performing shape optimization of horn-loaded loudspeakers. Spline-based parameterization was used to represent the 
horn geometry. The obtained optimal shapes of the loudspeaker resulted in an improvement in sound quality for the lis-
tener. Similarly, other related studies on acoustic horn shape optimization can be found in Wadbro et al. (2010) and Schmidt 
et al. (2016). All the above studies employed FEA-based shape optimization to design an efficient horn by minimizing the 
reflection from the horn.

In the present work, in order to design an efficient acoustic horn, the objective function of the problem considered 
is precisely the same as in Barbieri and Barbieri (2013) (which used FEA and GA), but instead of FEA, we employ IGA 
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Fig. 1. The wave flow (left to right) along with geometric definitions of the unbounded 2-D acoustic horn model. The input plane wave enters the horn from 
the inlet boundary (g) of width 2a, flows through the planar waveguide of length d, the conical horn section of length L, and leaves into the surrounding 
air as a cylindrical wave. The conical termination of the horn has a width of 2b. The unbounded region (�) is the domain of analysis.

to perform analysis during shape optimization. For the optimization process, TLBO was employed. The main advantage of 
IGA in the context of shape optimization is the exact representation of the geometry and smooth representation of the 
boundaries. Furthermore, high order analysis ensures higher analysis accuracy. The above-mentioned studies successfully 
utilized shape optimization in IGA for various applications. A recent review article on isogeometric shape optimization can 
be found in Wang et al. (2018b).

TLBO is a recently proposed evolutionary-based optimization algorithm (Rao et al., 2011). The main advantage of TLBO 
over GA is the absence of algorithm-specific tuning parameters. In GA, the optimal selection of the rate of crossover and 
mutation for a specific problem is not a straightforward task. Unlike GA and many other evolutionary algorithms, there 
are no algorithm-specific parameters in TLBO which makes it simple and easy to use. TLBO has been applied to various 
applications. Toğan (2012) applied TLBO for designing planar steel frames. Here the objective was to obtain minimum weight 
frames subjected to strength and displacement requirements. Improved optimum solutions were found using TLBO when 
compared with other evolutionary algorithms. Camp and Farshchin (2014) applied TLBO for designing space trusses with 
discrete and continuous design variables. The objective function was the total weight of the structure subjected to strength 
and displacement limitations. The computational performance of TLBO was compared with other classical and evolutionary 
optimization methods and found to be better. Rao and Patel (2013) applied TLBO to multi-objective optimization of the 
two-stage thermoelectric cooler. The basic TLBO algorithm was modified slightly to improve the convergence rate. Rao 
et al. (2012) applied TLBO for large scale non-linear optimization problems. The TLBO algorithm performed better, with 
less computational effort for large scale problems, when compared with other popular optimization algorithms. Various 
applications of TLBO can be found in Rao (2016).

The acoustic horn considered in this study is shown in Fig. 1.
Isogeometric shape optimization of the acoustic horn using the TLBO algorithm involves three steps: (i) generation of the 

required computation model. The computational domain was presented using a multi-patch NURBS (Non-Uniform Rational 
B-Splines). The multi-patch technique was employed to generate the model. (ii) Perform acoustic analysis using IGA. IGA was 
used to compute the pressure distribution and the reflection coefficient R, which was taken as the objective function. (iii) 
Find the optimum solution using the TLBO algorithm. The objective function, i.e. the reflection coefficient, R, was evaluated 
in the IGA platform as a function of the location of the control points controlled by the TLBO algorithm and minimized over 
iterations. Minimizing R has a significant effect on the overall reflection spectra of the horn.

2. The problem statement

We consider the acoustic horn shown in Fig. 1 for the shape optimization process. For simplicity, it is assumed that this 
horn speaker extends infinitely in the direction normal to the plane. Within the waveguide we consider a monochromatic 
planar wave propagating from left to right. It is assumed that all other non-planar modes are evanescent in the waveguide. 
When the planar wave reaches the conical portion, some of its energy is reflected back yielding a reflected wave. When 
these reflected and incoming waves interfere, superposition occurs leading to the formation of bands which decreases the 
efficiency of horn loudspeakers. This can be avoided or reduced by shape optimization of the horn profile.

The present study focuses on the horn with mirror symmetry about the plane passing through the centreline of the 
waveguide. The domain of analysis is the surrounding medium (�) as shown in Fig. 1. Any domain (�) to be analyzed 
should be bounded. In the present study, the computational domain was artificially truncated at a radius R� = 1 m identical 
to the study conducted by Bängtsson et al. (2003) and examples provided in Barbieri and Barbieri (2013). The corresponding 
symmetric bounded model of the acoustic horn is shown in Fig. 2. All the other dimensions of the horn model are given 
in Fig. 1. The domain of analysis (�) is shown in Fig. 2 as well as all the boundaries (Γ) of the model, and the radius of 
truncation (R�). Among all the boundaries, the boundary Γd, shown with the dotted red line is the design boundary which 
changes during optimization. Finally, the problem of shape optimization is defined as finding the optimal design boundary, 
Γd, for which the reflection is minimum.
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Fig. 2. Bounded computational acoustic horn model showing the definitions of the design and the domain regions. Γin is the inflow boundary through 
which the wave enters the waveguide. Γout is an artificial boundary created to truncate the outer unbounded space. Γn is the boundary of the structural 
horn. Γd is a subset of Γn and is the design boundary that changes during the optimization process. Γsym is the boundary of symmetry. � is the domain 
of analysis. R� is the radius of the truncation of the bounded domain. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Consider the initial incoming wave of frequency f and amplitude A. Let M (x, t) be the pressure distribution generated 
by this incoming wave where x is the spatial coordinate (x, y) and t is the instant of time. Let N(x, t) be the pressure 
distribution of the reflected wave which is a function of the design boundary, Γd, of the horn. Assuming only planar waves 
are present in the waveguide, the resultant pressure, P , of the two waves can be expressed as

P (x, t) = M (x, t) + N(x, t) (1)

Assuming that the acoustical pressure, P (x, t), is governed by the wave equation

∂2 P

∂t2
= c2�P (2)

where c is the speed of sound and � denotes the Laplacian operator. The general solution to the equation (2) can be 
expressed as

P (x, t) = Aei(kxn+ωt) + Bei(−kxn+ωt) (3)

where ω is the angular frequency, k = ω/c is the wavenumber, A and B are the amplitudes of input and reflected waves and 
n denotes the outward-directed unit normal on the boundary of �. Making use of the ansatz, P (x, t) = p(x)eiωt and taking 
into consideration appropriate boundary conditions-see (Bängtsson et al., 2003; Barbieri and Barbieri, 2013), for detailed 
discussion, the Helmholtz equation for the complex amplitude function, p(x), can be expressed as,

c2�p + ω2 p = 0 in � (4)(
iω + c

2R�

)
p + c

∂ p

∂n
= 0 on Γout (5)

iωp + c
∂ p

∂n
= 2iωA on Γin (6)

∂ p

∂n
= 0 on Γn ∪ Γsym (7)

2.1. Modeling of the computational domain

The above equation system is to be solved for the amplitude function, p, over the acoustic model shown in Fig. 2. The 
first step is to develop the required computational model. NURBS (Non-Uniform Rational B-splines) was used to develop the 
computational model shown in Fig. 2.

NURBS is a generalization of B-splines. B-splines are generated with the help of control points and the basis functions. 
The entire geometry is constructed in a parametric space ranging from (0–1). The parametric region is divided into intervals 
(knot spans) using knot vectors. A knot vector ξ = {

ξ1, ξ2, . . . , ξn+p+1
}

is a non-decreasing sequence of parameter values, 
where n is the number of basis functions and p is the degree of the basis. The basis functions are built using the following 
recursive relations. Given a knot vector ξ , the ith (i = 1 to n) basis function of zeroth degree (p = 0) is given by Piegl and 
Tiller (2012),

Ni,0 (ξ) =
{

1, ξi ≤ ξ < ξi+1
0, otherwise

(8)
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Fig. 3. The initial coarse mesh of the acoustic horn developed using NURBS. (a) Five patches (I, II, III, IV, and V). The design boundary, Γd, shown with the 
dotted red line is present in patch 4. Note that the Ist patch has two elements. (b) Corresponding control points of the mesh shown with red dots.

and for p > 0

Ni,p (ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (9)

Considering the B-spline basis functions, Ni,p (ξ) and their corresponding weights, w i , NURBS basis functions, R i,p (ξ), are 
defined as

R i,p (ξ) = Ni,p (ξ) w i∑n
i=1 Ni,p (ξ) w i

(10)

where R i,p (ξ) are the rational basis functions. Using these basis functions, a NURBS curve can be defined as,

C (ξ) =
n∑

i=1

R i,p (ξ) B i (11)

where, n is the number of control points, B i .
Similarly, NURBS surfaces S(ξ, η) can be defined in a two-parameter space (ξ and η) (Piegl and Tiller, 2012). Let p

and q be the degree of the basis in each parametric direction respectively. We denote the number of control points in the 
corresponding parametric directions by n and m respectively. Using the bidirectional net of control points {B i j} with their 
corresponding weights wij and the product of the univariate B-spline basis functions, the NURBS surface S (ξ,η) can be 
obtained as

S (ξ,η) =
∑n

i=1
∑m

j=1 Ni,p (ξ) Ni,q (η) wij B i j∑n
i=1

∑m
j=1 Ni,p (ξ) Ni,q (η) wij

(12)

If the piecewise rational basis functions R i, j (ξ,η) are introduced as

Ri, j (ξ,η) = Ni,p (ξ) Ni,q (η) wij∑n
k=1

∑m
l=1 Nk,p (ξ) Nl,q (η) wkl

(13)

Then, the NURBS surface in equation (12) can be written as,

S (ξ,η) =
n∑

i=1

m∑
j=1

Ri, j (ξ,η) B i j (14)

Using the above relations of NURBS basis functions, the horn computational model was developed. A 5-patch mesh of the 
horn model is shown in Fig. 3(a). By representing the domain with multi-patches, the design boundary (Γd) was described 
by the patch 4 only.

Initially, each patch is defined with the orders of 2 × 1 i.e., quadratic in one direction and linear in other. Each patch 
consists of single elements except patch 1 which has two elements. Fig. 3(b) shows the corresponding control points of the 
mesh. The patch wise list of control points along with the knot vectors of the coarse mesh is provided in Appendix A.
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Fig. 4. The square of the absolute value of the sound pressure (|ph |2) inside the computational domain. The formation of the bands in the waveguide 
demonstrates undesirable reflection.

2.2. Acoustic analysis of the computational domain

The system of acoustic equations (4)–(7), is to be solved over the developed computational model. In order to obtain 
the variational formulation for this system of equations, the solution, p, is approximated in space Vh = span{R j} ⊂ H1(�h)

where R j are the NURBS basis functions, H1(�h) is a space of square-integrable complex-valued functions. Multiplying Vh

with the elliptic equation (4) and integrating by parts gives the required weak form Barbieri and Barbieri (2013) as below,

c2
∫
�h

∇R j .∇phd� − ω2
∫
�h

R j phd� + iωc

∫
Γin∪Γout

R j phdΓ + c2

2R�

∫
Γout

R j phdΓ = 2iωc A

∫
Γin

R jdΓ (15)

The above equation (15) was discretized using NURBS basis functions and solved for the amplitude function, ph , using 
GeoPDEs 3.0 (Vázquez, 2016). It was shown that accurate results can be obtained in high order IGA with minimal pollution 
error even in mid to high-frequency range (Khajah et al., 2017, 2018; Khajah and Villamizar, 2019; Videla et al., 2019; Xu 
et al., 2019). In order to increase the accuracy of the analyses, k-refinement was performed for the entire domain. First, 
the bases were degree-elevated to biquintics and then the knot-insertion was performed by dividing each knot span into 5 
subdivisions. The total number of elements present in the refined analysis mesh was 150. The patch wise element list is as 
follows: Patch 1: 50, Patch 2: 25, Patch 3: 25, Patch 4: 25 and Patch 5: 25.

The computed square of the absolute value of the sound pressure, |ph|2, is shown in Fig. 4 for frequency f = 550 Hz, 
and Amplitude A = 1 m. The speed of sound was assumed to be c = 340 m/s. The generation of the bands can be seen in 
the waveguide which indicates reflection. These bands are generated due to the superposition of the incoming and reflected 
waves. For the loudspeakers, these bands create disturbances in the overall sound quality and hence should be avoided.

2.3. Objective function

From Fig. 4, it is clear that the task of shape optimization is to modify the shape of Γd (see Fig. 3(a) for boundary 
definition), such that the reflected wave component is minimized. The objective function for the shape optimization follows 
(Barbieri and Barbieri, 2013). The reflection coefficient, R , which is defined as the quotient between the amplitude of the 
reflected wave (B) and the incoming wave (A) was taken as the objective function.

R = B/A (16)

In the present work, the amplitude of input wave (A) was taken as 1 m. The total amplitude (p) at the inflow boundary 
can be written as, p = A + B . Therefore, the magnitude of the reflected wave on the inflow boundary, Γin , can be written 
as B = p − A. Denoting by p (0) = p (0,0) the value of p (x) in Γin , the objective function, f , can be defined as

min f = |p (0) − A| (17)

If f = 0, then p = A, and therefore, the reflection, B = 0. Since A = 1, R = f . The reflection coefficient, R is independent 
of the input amplitude A. It is the measure of the fraction of the incoming wave that reflected back. Equation (17) is the 
objective function for single-frequency optimization. The objective function formulation of multi-frequency optimization is 
presented in section 3. Several optimization algorithms were used for acoustic horn shape optimization in previous studies 
(Bängtsson et al., 2003; Barbieri and Barbieri, 2013; Barbieri et al., 2015; Morgans et al., 2008; Wadbro et al., 2010; Schmidt 
et al., 2016). In the present work, TLBO was used to control the design variables in order to obtain minimum reflection.
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Fig. 5. The reference design boundary, ΓdR, modeled with 10 control points shown with red dots. The boundary’s interior 8 control points are used as 
design variables.

Table 1
The coordinates of the control points defining the reference design boundary, ΓdR.

Control point X-Coordinate Y-Coordinate

1 −0.5 0.05
2 −0.48 0.06
3 −0.44 0.08
4 −0.38 0.11
5 −0.3 0.15
6 −0.2 0.2
7 −0.12 0.24
8 −0.06 0.27
9 −0.02 0.29
10 0 0.3

Fig. 6. The design space in the grey background showing the possibilities of the design boundaries Γd(ξ). ΓdR represents the reference design boundary.

2.4. The optimization model and the design space

For the optimization purpose, patch 4 which contains the design boundary (Γd) was reconstructed. In the process, the 
reference design boundary, ΓdR, was defined using 10 control points as shown in Fig. 5. The coordinates of the control 
points are shown in Table 1. The degree of the basis functions in the parametric direction (ξ ) in which the design boundary 
(ΓdR) was defined was set to 5. The interior 8 control points were used as design variables during optimization.

The effective geometric modeling of the design boundary Γd leads to efficient results as already stated that the horn 
reflections are very sensitive to the horn boundary. There are numerous possibilities of Γd in the design space provided. In 
the present study, a particular design boundary (Γd) is defined using a set of control points and their corresponding NURBS 
basis functions as

Γd =
n∑

i=1

B i R j (18)

where, B i are the control points, n is the number of control points and R j are the corresponding basis functions. A given 
set of control points, Bi , defines a particular design boundary. Hence, the control points, Bi , are the design variables which 
change during optimization. The bounds on the design variables define the scope of the design space. The design space is 
shown in the grey background in Fig. 6.
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3. TLBO algorithm

TLBO algorithm is a recently proposed evolutionary algorithm, which mimics the classroom environment for the opti-
mization process. It is a simple, robust and fast converging algorithm. The main advantage of the TLBO algorithm is the 
absence of algorithm-specific tuning parameters like crossover and mutation rate in GA and acceleration constants in PSO. 
TLBO is a simple algorithm and it consists of two phases namely teacher and learner phase.

In the TLBO algorithm, the number of students of a classroom (C) is treated as population size (P). The subjects are 
analogous to the design variables (X). The total marks scored in all the subjects by each student is the fitness value of that 
particular population in that generation. A particular design variable of an ith member of the population is referred to as 
Xij . After initializing the random values of design variables for all the population, the fitness values are computed for each 
population according to the objective function. The student with the best fitness value among the population is identified 
as the teacher. The corresponding design variables of the teacher, Xteacher j , are noted. Using this, the overall performance of 
the entire population is increased in two ways: (1) The teacher, tries to improve the performance of the students called as 
‘Teacher phase’ and (2) Students discuss among themselves to improve their overall performance called as ‘Learner phase’.

3.1. Teacher phase

In this phase, the teacher increases the performance of the overall population. Let r be the random number between 0 
and 1. First, the mean values, M j , of each subject for all students are computed i.e., the mean of each design variable for all 
the population is found. Then the old values of the design variables, Xijold , of the individual population are replaced with 
the new values, Xijnew , using the following relation (Rao et al., 2011):

Xijnew = Xijold + r(Xteacher j − M j) (19)

This is repeated for the entire population. After updating the design variables, the fitness values of the population are 
computed and are compared with the old fitness values. Among them, the best fitness values and their corresponding design 
variables are collected. This ends the teacher phase.

3.2. Learner phase

In this phase, the students improve themselves by interacting among themselves. After the teacher phase, randomly, 
two populations (m, n) are selected and their fitness values ( fm and fn) are compared. The design variables are modified 
according to

Xijnew = Xijold + r
(

Xmj − Xnj
)

if fm < fn

Xijnew = Xijold + r
(

Xnj − Xmj
)

if fn < fm (20)

This is repeated for the entire population. These modified values of the design variables are used to compute the new fitness 
values. The fitness values of the set obtained in the learner phase are compared with that of the teacher phase and the best 
solutions are selected among them. In the end, the best fitness value among the population is selected as the best solution 
for the current iteration. This ends the learner phase. This procedure is repeated until the convergence criterion is reached.

3.3. Acoustic horn shape optimization using TLBO algorithm

For all single and multi-frequency optimization, the y-coordinates of 8 control points of the design boundary (Γd) shown 
in Fig. 7 were taken as design variables. By taking only y-coordinates as design variables, the possibility of mesh distortion 
was reduced when combined with the corresponding movement of internal control points. Therefore, 8 design variables 
were considered in this study. The design boundary has higher continuity (Cp-1) due to the high order basis functions 
except at the endpoints which were not considered as design variables. The upper and lower bound of the design variables 
were uniformly selected to be ±0.04 resulting in the variation limits presented in Table 2.

In the single-frequency optimization, as stated earlier in Equation (17), the objective function is the reflection coefficient, 
R. The R has to be minimized by changing the shape of the horn through updating the location of the design variables 
controlled by TLBO algorithm. In multi-frequency optimization, two or more frequencies were considered simultaneously. 
Here, the optimization aims to find a unique horn shape that is optimal for all the frequencies considered. This is not 
a straightforward task since a shape optimal for one frequency might not be optimal for the others. Hence, it forms a 
multi-objective optimization problem. In this study, two-frequency and three-frequency optimization were considered.

The formulation of the multi-objective optimization problem is as follows: consider two frequencies denoted by F1 and 
F2. Suppose Op1 and Op2 are the respective optimal values obtained for F1 and F2 in single-frequency optimization. The 
normalized objective functions for multi-objective optimization are defined as
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Fig. 7. The reference design boundary, ΓdR, showing the design variables (Y1–Y8). The design variables are the y-coordinates of the 8 control points shown 
in red color. The extreme control points shown in black are fixed during optimization.

Table 2
Upper and lower bounds of the design variables.

Design variable Upper bound Lower bound

Y1 0.1 0.02
Y2 0.12 0.04
Y3 0.15 0.07
Y4 0.19 0.11
Y5 0.24 0.16
Y6 0.28 0.2
Y7 0.31 0.23
Y8 0.33 0.25

Normalobj1 = Obj1

Op1

Normalobj2 = Obj2

Op2
(21)

The normalization is carried out to ensure that both of the objectives are of a uniform scale. Then the final multi-objective 
function is formulated as

Multiobj = w1 × Normalobj1 + w2 × Normalobj2 (22)

where w1 and w2 are the weights. In our study, equal weights were considered i.e. w1 = w2 = 0.5. A similar formulation 
can be carried out for any multi-frequency optimization.

4. Shape optimization results

4.1. Single-frequency optimization

The horn was optimized for 4 single frequencies independently. The optimum horn shape was found for 280, 400, 550, 
and 780 Hz frequencies. Based on a few trials and errors on the objective function value, the population size and the 
maximum number of iterations considered for the study were 10 and 50 respectively. The optimization program was run 
for one or more times to obtain the smooth optimal shape. The smoothness of the shape obtained was inspected visually 
for manufacturability.

The optimum shape of the design boundary of the horn for frequency 550 Hz is shown in Fig. 8(a). The acoustic analysis 
was performed and the square of the absolute value of the sound pressure (|ph|2) is shown in Fig. 8(b). There are no visible 
bands in the waveguide in Fig. 8(b) which illustrates no or minimum reflection which shows a considerable improvement 
when compared to the initial design presented in Fig. 4.

The objective function values of the IGA-TLBO were compared with published results of FEM-GA (Barbieri and Barbieri, 
2013) in Table 3 obtained for a domain truncated at 1 m radius. The optimum solution found using IGA-TLBO reduces 
the value of the objective function more than those of FEM-GA. The GA characteristics are number of bits=12; number of 
elements by generation=25; maximum number of iterations=50; elitist reproduction; cross probability=0.05; and muta-
tion rate=0.02. In FEM-GA (Barbieri and Barbieri, 2013), the number of design variables for single-frequency optimization 
considered were 3.

The comparative results for the reflection coefficient, R, as a function of frequency are shown in Fig. 9 which is often 
referred to as the reflection spectrum. A reflection spectrum provides the variation of R for a particular horn shape over 
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Fig. 8. Single-frequency optimization results. (a) Optimal design boundary for 550 Hz frequency. (b) The square of the absolute value of the sound pressure 
(|ph |2) in the acoustic horn with no visible bands in the waveguide indicating no or minimal reflection.

Table 3
Results of single-frequency optimization comparing IGA-TLBO with FEM-GA (Barbieri and Barbieri, 2013).

Frequency Objective function (R) value 
using IGA-TLBO

Objective function (R) value using 
FEM-GA (Barbieri and Barbieri, 2013)

280 9.7683e-08 5.2903e-05
400 8.9054e-08 5.4937e-05
550 9.6784e-08 4.3822e-06
780 1.4491e-07 3.9092e-05

Fig. 9. Comparative results of reflection coefficient R, as a function of frequency (Hz). The reflection is further reduced using IGA-TLBO compared to FEM-
based optimization.

the entire frequency range. The reflection spectra obtained by IGA-TLBO in this study were improved when compared to 
FEM-GA (Barbieri and Barbieri, 2013) and FEM-BFGS (Bängtsson et al., 2003) as illustrated in Fig. 9.

Fig. 10 shows the results on the axis of symmetry and it can be observed that for the initial shape, the amplitude of 
|p(x,0)| varies along the waveguide (x ranging from −1 to −0.5), indicating the presence of the reflected wave, B �= 0, so as 
the bands exist as shown in Fig. 4. For the obtained optimal shape, it can be noticed that |p(x,0)| ≈ 1 along the waveguide 
resulting in minimal reflection i.e. B = 0. Hence, no bands are observed in the waveguide as shown in Fig. 8(b).

Similarly, the design boundaries of 280, 400 and 780 Hz are shown in Fig. 11(a). The respective reflection spectra were 
compared with that of FEM-BFGS (Bängtsson et al., 2003) in Fig. 11(b). From the figure, it can be observed that IGA-TLBO 
produced better reflection spectra compared to FEM-BFGS. The optimum values of the design variables for all the cases of 
single-frequency optimization are presented in Table 4.

4.1.1. Mesh dependency test
The results reported in the present study correspond to the design boundary (Γd) defined using the non-uniform dis-

tribution of control points as seen from Fig. 7. From the literature, it was found that the optimal solution of a shape 
optimization problem depends on the number of the design variables (control points) as well as their distribution on the 
design boundary (Γd). To study this, a design boundary with uniform distribution of 10 control points was generated and 
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Fig. 10. Values of p(x,0) for the frequency of 550 Hz.

Fig. 11. (a) Optimal design boundaries of the single-frequency optimization (280, 400 and 780 Hz). (b) Corresponding reflection spectra compared with that 
of FEM-BFGS (Bängtsson et al., 2003). IGA-TLBO produced better reflection spectra compared to FEM-BFGS.

Table 4
Optimal design variables for single-frequency optimization.

Design 
variable

Initial 
position

Optimal position 
(280 Hz)

Optimal position 
(400 Hz)

Optimal position 
(550 Hz)

Optimal position 
(780 Hz)

Y1 0.06 0.0564 0.0504 0.0540 0.0571
Y2 0.08 0.0788 0.0738 0.0634 0.0605
Y3 0.11 0.0856 0.0872 0.0667 0.0848
Y4 0.15 0.0744 0.0969 0.1122 0.1258
Y5 0.2 0.1215 0.1650 0.1619 0.1786
Y6 0.24 0.1772 0.2073 0.2162 0.2009
Y7 0.27 0.2692 0.2553 0.2375 0.2336
Y8 0.29 0.2848 0.2687 0.2558 0.2569

the shape optimization was performed for the frequency of 550 Hz by selecting the interior 8 control points as design 
variables. Fig. 12(a) shows the uniform distribution of the control points. The optimal objective function value obtained 
was 1.7180e-06 which was different from the one obtained using the non-uniform distribution of control points which was
9.6784e-08. The optimal shape obtained for both cases was also different. The acoustic analysis of the obtained optimal 
shape for the uniform distribution case is shown in Fig. 12(b).

Hence, the optimal solution changes if the distribution of the control points is changed. In the present study, the non-
uniform distribution case gave better results when compared to the uniform distribution case. The optimal solution was 
also analyzed for a different number of design variables. For this, a mesh dependency test was performed for three sets of 
design variables (6, 8 and 10) which are uniformly distributed on the design boundary (Γd) of the horn. The corresponding 
reflection spectra and the optimal shapes for the 3 cases (6, 8 and 10 design variables (DV)) considered are depicted and 
compared in Fig. 13(a), and Fig. 13(b) respectively.

In all three cases, the objective function values are found to be in the order of 10−6 as observed from Fig. 13(a). Different 
optimal shapes were found in each case. It was found that the acoustic horn is very sensitive to even a minor change in 
the boundary. Furthermore, the results of this study confirm previous observations reported in the literature that there are 
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Fig. 12. (a) The design boundary discretized with uniform distribution of control points. (b) The acoustic analysis of the obtained optimal horn. The square 
of the absolute value of the sound pressure (|ph |2) in the acoustic horn with no visible bands in the waveguide indicating minimal reflection.

Fig. 13. (a) The computed reflection spectra of the optimal shapes obtained for the input frequency of 550 Hz using the three different set of design 
variables. (b) The optimal shapes corresponding to the three sets of design variables.

possibilities of getting more than one optimal shape for a given frequency (Bängtsson et al., 2003). For the case with 10 
design variables, the optimal shape is wigglier. Hence, it is not desirable to model the design boundary with a high number 
of design variables than necessary. In case, if wiggly shapes are found by using a high number of design variables, a smooth 
design can be achieved by using a smoothing algorithm such as Tikhonov regularization (Mair, 1994).

Apart from the above studies, initially, shape optimization was performed by considering both the x and y-coordinates of 
the control points as design variables and compared the results with those found using y-coordinates only. It was observed 
for a fixed population size and number of iterations, lower objective function values were found when y-coordinates alone 
were considered as the optimization design variables. The movement of x-coordinates in the design space led to increased 
mesh distortion. Also, the inclusion of x-coordinates as optimization variables decreased the convergence speed due to the 
increased number of design variables. Hence, only y-coordinates of the control points were considered as design variables 
in the present study.

4.2. Two-frequency optimization

4.2.1. 350–450 Hz frequency
Shape optimization was performed for two frequencies (350 and 450 Hz) simultaneously. The analysis and optimization 

parameters were similar to single-frequency optimization. As discussed earlier, the challenge in multi-frequency optimization 
is that a particular shape optimal for one frequency might not be optimal for another. Therefore, arriving at a shape that 
is optimal for both the frequencies considered indicates the efficiency of the optimization algorithm. The employed TLBO 
algorithm produced improved results for multi-frequency optimization.

The optimal design boundary for the two-frequency (350 and 450 Hz) optimization is shown in Fig. 14(a). The numerical 
values of the objective function, f , are 1.0827e-07 and 1.2751e-09 for 350 and 450 Hz respectively. The corresponding 
reflection spectrum obtained by IGA-TLBO was compared with the literature and found to be better than the FEM-GA 
(Barbieri and Barbieri, 2013) and FEM-BFGS (Bängtsson et al., 2003) as shown in Fig. 14(b). The number of design variables 
used in IGA-TLBO, FEM-GA (Barbieri and Barbieri, 2013) and FEM-BFGS (Bängtsson et al., 2003) were 8, 8 and 29 respectively.



V.K. Ummidivarapu et al. / Computer Aided Geometric Design 80 (2020) 101881 13
Fig. 14. (a) Optimal design boundary for the two-frequency (350–450 Hz) optimization using IGA-TLBO. (b) The comparison of the reflection spectra of 
IGA-TLBO with FEM-GA and FEM-BFGS.

Table 5
Optimal design variables for two-frequency optimization.

Design 
variable

Initial 
position

Optimal position 
(350–450 Hz)

Optimal position 
(600–800 Hz)

Y1 0.06 0.0451 0.0583
Y2 0.08 0.0544 0.0630
Y3 0.11 0.0592 0.0828
Y4 0.15 0.0574 0.1225
Y5 0.2 0.0868 0.1608
Y6 0.24 0.1092 0.1832
Y7 0.27 0.1414 0.1943
Y8 0.29 0.2060 0.2600

Fig. 15. (a) Optimal design boundary for the two-frequency (600–800 Hz) optimization. (b) The corresponding reflection spectrum.

4.2.2. 600–800 Hz frequency
Similarly, an additional case of 600 and 800 Hz frequency was also performed and the obtained results are presented. 

The optimal design boundary is shown in Fig. 15(a) with the corresponding reflection spectrum in Fig. 15(b). The numerical 
values of the objective function, f , are 4.2456e-07 and 6.3705e-07 for 600 and 800 Hz respectively. No results were available 
in the literature for comparison. The values of the design variables defining the optimal horn boundary obtained for two-
frequency optimization are presented in Table 5.

4.3. Three-frequency optimization (400–600–800 Hz)

In the literature, no successful results were reported for three-frequency (400–600–800 Hz) optimization. Bängtsson et al. 
(2003) reported failed results which were caused due to the mesh corruption when solving the three-frequency optimization 
problem. In order to obtain the optimal solution, Bängtsson et al. (2003) refined the computational model to a much finer 
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Fig. 16. (a) Optimal design boundary for the three-frequency (400, 600 and 800 Hz) optimization. (b) The corresponding reflection spectrum.

Table 6
Optimal design variables for three-frequency optimization.

Design 
variable

Initial 
position

Optimal position 
(400, 600 and 800 Hz)

Y1 0.06 0.0501
Y2 0.08 0.0529
Y3 0.11 0.0567
Y4 0.15 0.0671
Y5 0.2 0.0911
Y6 0.24 0.1280
Y7 0.27 0.1632
Y8 0.29 0.2485

mesh and performed the multi-frequency optimization. In the present study, three-frequency optimization was carried out 
using the same mesh which was used for single-frequency optimization. Due to the inherent advantages of IGA, there was 
no mesh corruption. The obtained optimal design boundary is shown in Fig. 16(a) and the corresponding reflection spectrum 
is shown in Fig. 16(b). The obtained shape is very smooth with a low reflection coefficient for all the targeted frequencies. 
The values of the design variables defining the optimal design boundary are presented in Table 6.

5. Conclusion

The combination of IGA and TLBO has been successfully applied to acoustic horn shape optimization. A Multi-patch 
model was developed for the acoustic horn which was refined to 150 elements during analysis. The weak form of the 
acoustic system was solved for pressure distribution and reflection coefficient, R, using IGA. The 8 control points describing 
the design boundary were considered as the design variables which were modified to reduce the reflection coefficient, 
R of the horn using the TLBO algorithm. The main advantages of TLBO are: (1) the absence of algorithm-specific tuning 
parameters unlike other evolutionary optimization algorithms like GA and PSO; (2) no need for gradient computation, unlike 
gradient-based optimization methods.

In single-frequency optimization, 4 cases (280, 400, 550 and 780 Hz) were considered. The obtained optimal values and 
the reflection spectra were better than the FEA-based results reported in the literature. IGA-based shape optimization pro-
duced better results than FEA-based shape optimization due to the use of higher-order basis functions which increase the 
analysis accuracy combined with the increased flexibility of the boundary shape deformation through the use of NURBS 
basis functions. In multi-frequency optimization, two and three-frequency optimization was performed. The obtained opti-
mal shapes were smooth and the reflection spectrum was much better than the FEM-based methods. The three-frequency 
optimization was performed using the same mesh that was used in single-frequency optimization, unlike earlier methods 
that used a much finer mesh to avoid mesh corruption leading to convergence issues.

The use of IGA benefited from increased accuracy per degree of freedom, geometry exactness, and convenient refinement 
which are missing in conventional FEM. The developed platform is readily expandable to optimize 3D problems. However, 
a considerable increase in computational cost and optimization time is expected. Some of the limitations of the proposed 
approach are: (1) The possibility of the multiple optimum solutions makes identifying the best solution possible difficult, 
(2) Increasing the number of design variables leads to wiggly optimum shapes which are not easy to manufacture. In the 
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future, we are planning to implement the proposed method to optimize other devices relying on acoustic wave propagation 
and compare the results with those obtained using IGA-BEM.
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Appendix A. The patch wise list of control points along with knot vectors of the initial coarse mesh

Patch 1:

Knot vector, u Knot vector, v X-Coordinate of the 
control point

Y-Coordinate of the 
control point

The weight of the 
control point

[0,0,1,1] [0,0,0,0.5,0.5,1,1,1]

0.1950 0.9807 1
−0.0248 0.3433 1
−0.2402 1.0601 0.9137
−0.1498 0.2808 1
−0.5975 0.8018 1
−0.2748 0.2183 1
−0.9541 0.5361 0.9137
−0.3998 0.1558 1
−0.9956 0.0933 1
−0.5248 0.0933 1

Patch 2:

Knot vector, u Knot vector, v X-Coordinate of the 
control point

Y-Coordinate of the 
control point

The weight of the 
control point

[0,0,1,1] [0,0,0,1,1,1]

0.8314 0.5555 1
0.0000 0.3000 1
0.6001 0.9000 0.9238
−0.0124 0.3216 1
0.1950 0.9807 1
−0.0248 0.3433 1

Patch 3:

Knot vector, u Knot vector, v X-Coordinate of the 
control point

Y-Coordinate of the 
control point

The weight of the 
control point

[0,0,0,1,1,1] [0,0,1,1]

0.0000 0.0000 1
0.0000 0.1500 1
0.0000 0.3000 1
1.0000 0.0000 1
1.0000 0.2902 0.9569
0.8314 0.5555 1

Patch 4:

Knot vector, u Knot vector, v X-Coordinate of the 
control point

Y-Coordinate of the 
control point

The weight of the 
control point

[0,0,0,1,1,1] [0,0,1,1]

−0.5000 0.0000 1
−0.5000 0.0250 1
−0.5000 0.0500 1
0.0000 0.0000 1
0.0000 0.1500 1
0.0000 0.3000 1
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Patch 5:

Knot vector, u Knot vector, v X-Coordinate of the 
control point

Y-Coordinate of the 
control point

The weight of the 
control point

[0,0,1,1] [0,0,0,1,1,1]

−0.9987 0.0500 1
−0.5000 0.0500 1
−0.9996 0.0250 1
−0.5000 0.0250 1
−1.0000 −0.0000 1
−0.5000 0.0000 1
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