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Abstract. Horn loaded loudspeakers increase the efficiency and control the spatial
distribution of sound radiated from the horn mouth. They are often used as com-
ponents in cinema sound systems where it is desired that the sound be broadcast
onto the audience uniformly at all frequencies, improving the listening experience.
The sound distribution, or beamwidth, is related to the shape of the horn and can
be predicted by numerical methods, such as the boundary element or source super-
position method, however the cost of evaluating the objective function is high. To
overcome this a surrogate optimization method called Efficient Global Optimization
(EGO) was used with a spline based parameterization to find the shape of the horn
that gives a frequency independent beamwidth, thus giving a high quality listening
experience. (Submitted for the SMSMEO-06 special issue).
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1. Introduction

The engineering design of consumer and industrial products is moving
from simple analytical and heuristic techniques to using very complex
or computationally expensive numerical calculations, often embedded
in a numerical optimization routine. This paper describes one such
application in engineering design, the shape optimization of a horn
loaded audio loudspeaker to improve its sound quality. A numerical
technique called the source superposition method, similar to the bound-
ary element method, has been shown to produce accurate simulations of
horn loaded loudspeakers. With the choice of an appropriate objective
function to measure sound quality and an appropriate shape parame-
terization, a frequency independent or constant beamwidth horn design
can be found that provides position independent frequency response for
the listener, more accurately reproducing the intended sound.
Although the source superposition method is very computationally
efficient compared to other methods, performing calculations across a
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range of frequencies makes it relatively computationally expensive in
this application, and derivatives of the objective function with respect
to the input variables are difficult to calculate because of numerical
noise. Hence a surrogate optimization technique called Efficient Global
Optimization (EGO) is used. This method requires no knowledge of the
derivative of the objective function with respect to the input variables,
and is suitable for the current application.

The structure of this paper is as follows: a brief description of horn
loaded loudspeakers and their use in the cinema industry is given as
background to the application; the measure of sound quality used in
the optimization (the objective function) is discussed; the geometry
parameterization is described; an overview of the numerical models
used to calculate the objective function is given; a description of the
EGO optimization method is provided; the results of the shape opti-
mization are given; and finally the work is summarized and conclusions
are drawn.

2. Horn loaded loudspeakers

The aim of sound reproduction systems in cinemas is to provide a high
quality listening experience, accurately reproducing the recording for
any listener in the audience. The horn loaded loudspeaker is a com-
ponent often used in cinema sound systems and in related live sound
reinforcement systems. This device is used because it is an efficient
audio transducer, and provides some control over the spatial distri-
bution of sound away from the horn mouth. The sound distribution,
or beamwidth, is related to the shape of the horn and it is critical for
listening quality that the sound be distributed evenly onto the audience
at all frequencies.

Figure 1 shows a commercially available cinema loudspeaker system.
A horn loaded loudspeaker broadcasts the high frequency content (gen-
erally above 500H z) and is mounted on top of a low frequency direct
radiator loudspeaker. The system is located behind the cinema screen.

A schematic of a horn loaded loudspeaker system is shown in Figure
2, which consists of two main components, a compression driver and a
horn flare. The source of the sound, the compression driver, consists of
a small (usually titanium) diaphragm driven by a conventional electro-
magnetic drive (voice-coil and magnet) positioned in front of an abrupt
change in cross sectional area. The flare changes the cross sectional area
gradually from the throat through to the mouth of the horn. The shape
of the horn flare controls the spatial distribution of sound, and the horn
flare (or just horn) is the component considered in this study.
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Figure 1. Commercial cinema loudspeaker (Krix Loudspeakers, 2007).

The distribution of the sound field in front of the horn varies with
the frequency of excitation, and a measure of this variation in the far
field of the horn (over the audience) is needed. The beamwidth, or
coverage angle in a plane, defined as the “angle formed by the -6dB
points (referred to the on-axis reading) and the source center” is used.
Specification of the beamwidth variation with frequency for both the
horizontal and vertical planes has long been industry practice (Davis
and Davis, 1997) and more recently and importantly has been used by
Lucasfilm, an important industry body, in the specification of sound
quality requirements for cinema loudspeaker systems (THX, 1996). In
the case of cinema audio, it is critical to the listening experience that
the sound be distributed evenly onto the audience at all frequencies
(frequency independent or constant beamwidth), and hence beamwidth
is the principle measure adopted to assess sound quality.

The optimization of horn loaded loudspeakers to produce a desired
outcome has been attempted previously. Examples include an opti-
mization of the beamwidth of a horn loaded woofer using a 3D BEM
(Miccoli, 1999), the optimization of the frequency response of a horn
loaded tweeter using axisymmetric BEM (Henwood, 1993; Geaves and
Henwood, 1996), and most recently FEA to optimize the frequency

RCM_SMSMEO_paper.tex; 1/03/2007; 16:48; p.3



Smallrear Loudspeaker  Abrupt change

box & diaphragm in cross sectional

Horn throat

Compression
Driver

Horn
mouth

I
Horn Flare - Gradual change in area

Figure 2. Schematic of horn loaded loudspeaker.

response of a planar horn (Béngtsson et al., 2003). None of these
methods have been applied to optimizing beamwidth for the type of
horns used in cinema loudspeaker systems.

3. Measures of audience sound quality

For any optimization, an objective function describing the relative
merit of the current solution must be calculated. The stated objec-
tive for designing horn loaded loudspeakers to improve audience sound
quality is a smooth, frequency independent beamwidth. Defining,
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®; = mean (B (f > fiin)) (1)

®y = std (B(f > foin)) (2)
o

S =3 (3)

where mean (x) and std (x) are the mean and standard deviation of
vector x, respectively, S is an objective measure of the beamwidth
smoothness, and B (f) is the vector of beamwidths calculated over a
range of frequencies described by the vector f. The operator f > f i
selects only those frequencies above fi,;,. This operator is required
because when the wavelength of sound is large in comparison to the
size of the horn (i.e. low frequencies) then the horn has no influence on
the sound and the radiation pattern is omnidirectional. The smaller the
value of S, the smoother the beamwidth over the range of frequencies
considered, so the objective of the optimization can be written as,

min S (4)

with an optional equality constraint

(I>1 - Bnom (5)

where By, is the nominal (or desired) beamwidth.

Figure 3 shows a typical calculation of beamwidth for a small horn.
The solid black line is the beamwidth evaluated at a 50H z frequency
spacing, ranging from 300 to 12000H z. This fine frequency spacing is in-
appropriate for the numerical calculations used in the optimization due
to computational cost, and the beamwidth was calculated at a coarse
400H z frequency spacing (the vector f). The black circular markers
show the values of the beamwidth B (f > fy.in) at these frequencies.
The cutoff frequency finin = 3000 avoids the omnidirectional nature
of the sound field at low frequencies. The dashed line is the value of
®4, the mean value of the beamwidth and a value of S, the objective
function is reported.

4. Numerical model
The source superposition technique (Koopmann and Fahnline, 1997)
is a numerical method that can be used to solve the acoustic pressure

field generated by, and acoustic power radiated from, arbitrarily shaped
surfaces. It is similar to a Boundary Element Method, but cannot be
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Figure 3. Typical beamwidth calculation for a small horn.

classified as such because it does not directly discretize and solve the
Kirchoff-Helmholtz equation (Morse and Ingard, 1986). The technique
is fully three dimensional, and not limited to a one dimensional ap-
proximation such as those traditionally used to model horns (Holland
et al., 1991; McLean et al., 1992; Mapes-Riordan, 1993), which have
been shown to be invalid above a certain limiting frequency (Morgans
et al., 2005). An extensive review of the literature has been unable to
find any previous application of the source superposition technique to
horn modeling, although it is an ideal candidate for this because it is
able to accurately model the far-field pressure with a limited number
of elements per wavelength (Morgans et al., 2004). The technique can
also efficiently model “thin” surfaces such as the surface of horn loud-
speakers. For further details of the method see Koopmann and Fahnline
(1997) and Morgans et al. (2005).

A simple axisymmetric horn has been manufactured to allow exper-
imental validation. This horn, shown in Figure 4, has a 2 inch (50 mm)
diameter throat, an 11 inch (280 mm) diameter mouth with a 1 inch (25
mm) flange. It is 9.25 inches (235 mm) in length, and consists of two
conical horns joined together, and hence is known as a two step conical
horn. Figure 5 shows a quarter symmetric mesh used to calculate the
sound field using the source superposition technique.

Excellent agreement between the numerical results and experimental
measurements was obtained as shown in Figure 6. In the current work,
only axisymmetric simulations are performed, however the methods
used can be extended to 3 dimensional calculations as required by
industry.
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Figure 4. Experimental two step conical horn.
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Figure 5. Quarter symmetric source superposition mesh.

5. Geometry parameterization

A spline based parameterization is used to define the horn geometry.
The spline starts at the horn throat, at diameter D; = 50 mm (2
inches), and finishes at the mouth, at diameter D,, = 165 mm and
length L = 235 mm. A parametric cubic spline is fit between the start
and end points, with two intermediate points to control the shape of
the curve. Figure 7 shows the range of geometries possible with this
parameterization, with the control points shown as white circles. The
small black dots show the lines that fix the position of the control
points, with the first control point located a fraction z1 along the length
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Figure 6. Comparison of measured and calculated beamwidth for the source
superposition technique.

of the first line, and similarly for 22 the position of the second control
point. For further details refer to Morgans et al. (2006).

6. Optimization method

Once the objective function and geometry parameterization are speci-
fied, an optimization routine can be called to systematically vary the
input parameters until the desired characteristics of the sound field are
achieved by minimizing S. Standard gradient based optimization meth-
ods such as Sequential Quadratic Programming (SQP) (Schittkowski,
1985) are local optimization methods and as such often have to be run
many times from different starting positions to avoid local minima, and
even then a globally optimum solution is not guaranteed. In addition,
gradient information in the form of the derivative of the objective func-
tion with respect to the input parameters is required. In the horn loaded
loudspeaker application, gradient calculation is difficult for a number
of reasons: no simple analytical gradient calculation is possible; and a
finite difference approximation to this gradient is problematic because
of the discrete nature of the meshing used in the source superposition
method where a small change in horn profile could lead to a jump in the
objective function. A finite difference gradient can also require many
calls to the function making it relatively computationally expensive.
Accordingly, a gradient free surrogate based global optimization tech-
nique is preferred, such as the Efficient Global Optimization (EGO)
technique (Schonlau, 1997; Jones et al., 1998).
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Figure 7. Variation possible in spline horn geometry. Parameters vary between upper
and lower bounds, 0 < zx1 <1and 0 <22 < 1.

The EGO technique proceeds as follows. A number of different sets
of input parameters are randomly generated to give a representative
sample over the range of potential solutions. Here the random samples
are generated by Improved Hypercube Sampling (IHS) (Beachkofski
and Grandhi, 2002), which attempts to generate a space filling design,
but any suitable design of experiments method could be used.

The objective function is then evaluated for each set of input pa-
rameters and a surrogate model is fitted to the objective function.
This surrogate model describes both the variation of the mean value
of the objective function between the sample points and the uncer-
tainty between them, and is much less computationally expensive to
evaluate that the original objective function. In this application, a
Kriging technique is used (Lophaven et al., 2002). Kriging techniques,
developed in the geostatistics and spatial statistics fields, fit a surface
to a set of data points values. It models the variation of the unknown
function as a constant value plus the variation of a normally distributed
stochastic variable. It is essentially a method of interpolation between
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known points that gives a mean prediction (7 (z)) in addition to a
measure of variability of the prediction (s (x), the estimated standard
deviation). Another appropriate optimization technique such as SQP,
simulated annealing (Ingber, 1993) or the DIRECT method (Finkel and
Kelley, 2004) is then employed to find the next best place to sample
for a minimum objective function. The secondary objective function
used in this application is the Expected Improvement (E [I]) objective
function. The improvement function (/) is defined as the improvement
of the current prediction, g (z), at point  over the minimum value of
the current set of samples, Yin, 1.€.

I = max (Ymin — 9 (z),0) (6)

The expected improvement, defined as the expectation of the improve-
ment, is given by

EU]z(%mn—gcm)cpp<%mi:ﬁﬁﬁ>

+5@9PDF<%E%6§§Q> (7)

Where CDF (z) is the standard normal cumulative density function,
and PDF () is the standard normal probability density function. The
point at which the value of the expected improvement is maximized
gives the best point at which to calculate the true objective function.
The Expected Improvement is constructed so as to search for both local
and global minima (Schonlau, 1997; Jones et al., 1998). The surrogate
model is then updated to include the newest sampled point, and the
operation repeated until the sampling point does not change and the
global minimum of the objective function has been found.

One advantage of the EGO method is that it requires a minimal
number of objective function evaluations, and most of the optimization
is done on the computationally cheap surrogate. This makes the method
very efficient when the objective function is computationally expensive,
as is the case in the current application.

7. Results

The results of the EGO optimization of S for the horn geometry de-
scribed in Section 5 appear in Figure 8. A contour of the Kriging
surrogate mean predictions of S is shown, along with the positions
of the EGO sample points. The 25 circular markers show where the
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initial points are sampled, and the 25 square markers show the sample
points chosen by the Expected Improvement function, balancing both
local and global optimization. A convergence to the global minimum
can be seen with repeated sampling (many square markers) around the
global minimum (diamond marker) at 1 = 0.49 and 22 = 0.69. Figure
8 indicates that the global minimum of an unconstrained 2 parameter
optimization of S can be found within 50 function evaluations with
reasonable certainty, and other optimizations produce similar results.
The value of S does change with the frequency spacing chosen for
f, but it was found that the optimization converged to similar horn
profiles for frequency spacings between 50 and 400H z. The horn pro-
file corresponding to the global minimum is shown in Figure 9, and
the beamwidth calculated from the optimial horn profile is shown in
Figure 10. A nominal beamwidth of 47.1° with parameter S = 3.1% is
achieved.

0 . " .
0 0.25 0.5 0.75 1

x1

Figure 8. Optimization trajectory for the 2 parameter spline horn geometry.

Comparing Figure 10 with the beamwidth of the experimental horn
in Figure 6 it can be seen that a constant beamwidth with frequency
has been achieved above a certain limiting frequency. The optimization
had no constraint on the value of ®1, the mean value of the beamwidth.
The inclusion of the desired mean beamwidth as a constraint would be
beneficial for the automated design of horns but because the current op-
timization does not include horn length and mouth as parameters, but
as fixed values, achieving an arbitrary mean beamwidth is physically
impossible due to geometric constraints. It would be possible to include
these extra parameters in a further optimisation, and other methods
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Figure 9. Profile of optimal 2 parameter spline horn geometry.
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Figure 10. Beamwidth for optimal 2 parameter spline horn geometry.

to overcome this are discussed in Morgans (2005) and Morgans et al.
(2006).

8. Summary and Conclusions

This paper has described horn loaded loudspeakers and their applica-
tion in the cinema industry. It has introduced the concept of beamwidth
as a measure of the uniformity of the sound field over the audience, and
discussed the need for a frequency independent or constant beamwidth
to improve the sound quality for the listener. It has discussed one ob-
jective function that succinctly quantifies the aims of a horn designer,
and has described a flexible horn geometry based on a parametric cubic
spline with two controlling parameters.
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Of the many numerical techniques available the source superposi-
tion technique has been shown, by comparison with experiments, to
be a good choice for modeling the sound field radiated by horns. It
is capable of reproducing the sound field generated by a small horn
loaded loudspeaker from a specification of the horn geometry, and the
accuracy of the reproduction is adequate for design purposes within
the required frequency range.

A fast and reliable gradient free optimization technique for expen-
sive objective functions, Efficient Global Optimization, has been intro-
duced, and results of the shape optimization show that it is capable of
producing a horn shape that provides a constant beamwidth above a
certain limiting frequency. The method can easily be extended to both
the specification of a desired mean beamwidth, and to 3 dimensional
calculations, as required by industry. Overall, the Enhanced Global
Optimization technique is a robust design method for horn loaded
loudspeakers.
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