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Abstract

This dissertation considers modeling and identification of nonlinear systems perti-
nent to loudspeakers with nonlinear distortion effects. It is well known that when
loudspeakers are driven at high playback levels the nonlinear characteristics of these
speakers become a major source of sound degradations. Nonlinear distortion not only
diminishes listening pleasure but more importantly impairs speech intelligibility. Con-
sequently it is essential to find a good model that matches to the loudspeaker response
for the purpose of predicting and preventing the nonlinear distortion. This becomes
particularly important for the purpose of improving sound quality of mobile phones.
This report analyzes the loudspeaker operation and provides nonlinear modeling tech-
niques that can reliably be used for its identification process. Frequency domain and
state-space modeling are considered and emphasis is given towards model that mix

polynomial nonlinear state-space models and fractional order state-space models.



Glossary

Notations

e 1: state vector € R"e

e y: system output € R

e u: system input € R

e n: noise (or index, depending on context)

e {: time variable (or index, depending on context)

e A: state matrix € R"*"e

e B: state-input matrix € Rme*!

e (' state-input matrix € R!*"a

e [: output-input matrix € R

e E: polynomial weight matrix (state equation) € R"**"»
e [: polynomial weight matrix (output equation) € R1*"
e p: vector of monomials (PNLSS equations) € R"»*!

e d: nonlinearity order € N
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vii

® ((g): vector of ¢ monomials of degree d

Ciay: vector of ¢ monomials of degree 2 to d

diag(M): diagonal matrix formed from the diagonal elements of M

vec(M): column vector obtained by stacking all the columns of M on top of

each other, from left to right

M™: Moore-Penrose pseudo-inverse of matrix M

*

e 2*: complex conjugate of z

Acronyms

e BLA: Best Linear Approximation

e CT: Continuous Time

e DT: Discrete Time

e DF'T: Discrete Fourier Transform

e FRF': Frequency Response Function

e LS: Least-squares

e NL: NonLinear

e ODE: Ordinary Differential Equation

e PNLSS: Polynomial Nonlinear State-Space
e SVD: Singular Value Decomposition

e RMSE: Relative Mean Square Error
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Chapter 1

Introduction

Acoustic transducers are part of our everyday life, and we use them intensively
throughout the day using our cellphones, listening to the radio in our car, look-
ing at the TV or playing games on computer at night. In all cases, sound distortion
is present and has negative impact on the sound quality, diminishing listening plea-
sure and, worse, speech intelligibility. In some cases, texting is the only way to get
our message across. In particular, cellphones, teleconference systems, PC systems
use small loudspeakers driven at high-amplitude to get enough sound level greatly
increasing nonlinear distortion. It is particularly critical when it comes to hands-free
or speaker-phone situations. So, nonlinear distortion becomes increasingly prevalent,
and yet there is still no satisfactory model for this phenomenon.

The study of loudspeaker and its characterization based on sine response remained
common approach for many years. Sine sweep, step by step or continuous, have been
used to measure frequency response and distortion. For non-linear behavior char-
acterization single tone is used to measure harmonic distortion and two tones are
used for intermodulation and difference distortion. Many different and sophisticated
variations of these basic measurements are used, but sine response doesn’t predict

reliably the music or speech quality. Multitone and random noise excitations, along
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with coherence analysis have been introduced [1] but have not gained in popularity.
The different distortion measurements (harmonic distortion, intermodulation, multi-
tone distortion, non-coherent power ) are not related to each other by an underlying
model, and remain purely symptomatic.

It is natural to think that the loudspeaker industry could benefit from the modern
techniques of nonlinear system identification to obtain a comprehensive and accurate
model for diagnosis, quality control, simulation, prediction and ultimately, lineariza-
tion. Following the advancements in nonlinear system theory, during the last 30
years, many attempts have been made in the identification and linearization of loud-
speaker [2-12]. However due to the wide range of audio frequencies (20 Hz to 20kHz),
the complexity of the device and high human ear sensitivity, the loudspeaker identi-
fication and linearization remain an elusive goal.

This study reviews recent developments in the domain of loudspeaker identification
and explores new possibilities to improve modeling that is better match to the loud-
speaker response. First we present the loudspeaker operation principles and the major
causes of distortion, then we explore the successive modeling approaches that have
been investigated in the last decades. Finally we provide new directions of research in
the frequency domain and propose two techniques based on state-space for modeling
of loudspeaker which can effectively be used in identification process.

The first one is a polynomial extension of the state-space model that provides a generic
and comprehensive approach to the representation of Lipschitz nonlinear systems. A
two steps identification method is proposed. Simulation and experimental results are
presented and discussed.

The second one is a fractional order state-space modeling. We show that fractional
order differential equations lead to a simpler and more accurate modeling of the

loudspeaker dynamics. The theory of fractional calculus pertinent to our study is
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explained. An identification technique adapted from the previous one is described.
Experimental results are shown that confirm the validity of our approach.

As the identification process can produce models with excessive order and unstable
poles a section describes different methods for model reduction and stabilization.
Finally a section shows how the two approaches (polynomial and fractional order)
can be combined to obtain a comprehensive (linear and nonlinear) modeling of the

loudspeaker.



Chapter 2

Problem Description

In this chapter, we present the operation principle of common loudspeaker and a
first approach of state-space modeling. An analysis section shows the limit of that

approach in presence of nonlinearities.

2.1 Loudspeaker Mechanism

The most common type of driver is electro-dynamic. The driving part, the motor,
is a moving coil into a static magnetic field. The audio signal goes through the coil
and creates a variable magnetic field that interact with fixed magnets and generate a
mechanical force that is roughly proportional to the electrical current. The acoustic
radiation is insured by a lightweight cone (diaphragm) attached to the coil. An elastic
suspension maintains the coil and the attached cone in place into the frame ("basket”).
The cone is also mechanically connected to the basket by an elastic suspension called
surround (see fig. 2.1). Designing a driver combines acoustic, mechanical, electrical
and material science. A simplified linear model based on lumped parameters describes

the loudspeaker mechanism at low frequencies and small amplitudes. It is composed
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Figure 2.1: Loudspeaker mechanism

of two differential equations.

di dx
t) = Rui(t L— + Bl— 2.1
u(t) = Ri(t) + Lo + BI% (2.)
>z dx
(1) = m—— — 2.2
Bli(t) mdt2—|—rdt+k‘x(t) (2.2)

where u(t) is the input voltage, i(t) the current, x(t) the cone displacement and R,
L, Bl, m, r, k are electromechanical parameters of the loudspeaker. It is important
to note that the force factor Bl, the voice coil inductance L and the stiffness k are
nonlinear function of the displacement x. Therefore non-linearity is intrinsic to the
driver’s principle of operation. Beside the changing parameters just mentioned, there
is a wide variety of non-linear behaviors [13]. For example, at high frequencies the
cone and dome no longer behave as rigid bodies. They exhibit breakup modes and
eventually the vibrations become nonlinear. Another distortion inherent to the fun-
damental principle of operation is the Doppler effect due to the fact that the sound

is emitted from the diaphragm which is a moving source.



CHAPTER 2. PROBLEM DESCRIPTION 6

2.2 State-Space Modeling

In this subsection we introduce the state-space representation of the loudspeaker. By

inspection of equations (2.1) and (2.2), the following state vector can be defined:

dx

A1) 2 (o(t), 5

S i) = (21(1), 22(0), 28(1)

Hence (2.1) and (2.2) can equivalently be written as:

21 = 29
u = Blzy + LzZ3 + Rz
Blzs = mzy +rzy + k2

where:

;002
S dt

Simple algebraic manipulations leads to:

21 — k9
k r Bl
22———21——22+_23
m
B R
Z3 = LZQ LZ3 LU

which can be written in state-space notation as follows:

0 1 0 0
i=|-k —z B z+ 1|9 u = Az + Bu (2.3)

Bl _R 1

0 -7 -1 I

The output variable can be either the cone displacement z(t) or the cone velocity fl—f.

If the cone velocity is chosen, the output equation is given by:

y(t) = (0 1 0) 220z (2.4)
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The pair of equations (2.3) and (2.4) form the State-Space equations of the model
described by (2.1) and (2.2). However the acoustic pressure produced at some distance
of the loudspeaker is proportional to the cone acceleration and that has to be taken
into account when considering a loudspeaker model identification based on acoustic
measurements.

The Frequency Response Function (FRF) is obtained in a standard manner from the

State-Space equations:
G(jw) =Y (jw)/U(jw) = C(jwl — A)™'B

JwG(jw) will then yield the acoustic frequency response with a scale factor . As an

example, using the following parameters from a real loudspeaker [11]:

o m= 1435 ¢
e 1= (0.786 kg/s
o k= 1852 N/m
o Bl=4.95 N/A
o L= 266 ul
e R= 3.3 Ohms

the acoustic frequency response shown in Fig. 2.2 is obtained. The FRF exhibits the
overall characteristics typical of a loudspeaker which incorporates band-pass response
with audio range 60-2kHz and 4+40dB/decade in the low range. However this is
clearly a very simplified model as compared to the reality (Fig. 2.3) which shows the

limitations of physical modeling of actual loudspeaker.
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Loudspeaker Acoustic FRF (simplified model)

5 ————————r . —

_35 . M | . M | . M |
10 10 10° 10 10
Hz

Figure 2.2: Loudspeaker Acoustic FRF (simple model).

2.3 Analysis

As we pointed out in the introduction, we are dealing with loudspeaker, not only for
music and entertainment but also for communication. In the case of complex signals
like speech or music, distortion sounds generally like a modulation noise that degrades
the clarity of the signal. To demonstrate this effect, music has been played through
a loudspeaker and the added non-linear distortion has been measured as the non-
coherent power present in the acoustical signal [1]. Fig. 2.4 shows both the spectrum
of the musical signal and the spectrum of the added distortion noise. To further
analyze various modeling methodologies, we start with the simple state-space model
introduced in the previous section and study the effect of its parameter variations.
Due to the fact that parameters such as the force-factor Bl is not constant, rather it
has the following nonlinear characteristic (Fig. 2.5), we perform a robustness analysis
on the simplified model. Fig. 2.6 shows the response of simplified model of Fig. 2.2
with interval uncertainty on the parameter Bl. It can be shown that the envelope of
the uncertainty captures the nonlinear uncertainty within the specified interval. At

the same time we add a nonlinear term using a polynomial approximation to the linear



CHAPTER 2. PROBLEM DESCRIPTION 9

Loudspeaker Acoustic FRF (measured)
5 T T T T LR | T |

_35 . M A | . M | . ] |
10 10 10° 10 10
Hz

Figure 2.3: Loudspeaker Acoustic FRF (measured).

model (2.3) in order to show its effects on the simplified model. Comparing the exact
response of the loudspeaker (Fig. 2.7) suggest that one needs a more sophisticated
nonlinear state-space model to be used for system identification purposes. This will

be discussed in more details in further section.
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Figure 2.4: Music spectrum and Distortion Noise from a Loudspeaker.
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Loudspeaker Accel FRF for Bl= 5+/- 2 N/A
5 T T T T LR | T |
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Figure 2.6: Loudspeaker Acoustic FRF (simple model) with Bl perturbation.

Loudspeaker Accel FRF + polynomial nonlinearity order 2
0 —— ‘ T ‘

dB
R
=}
T

Hz

Figure 2.7: Loudspeaker Acoustic FRF (simple model) with added nonlinearity.
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Chapter 3

Previous Approaches

This chapter reviews some classical methods of nonlinear modeling in a historical

perspective.

3.1 White Box (1980’s)

The first attempts of system identification applied to loudspeaker were based on the
lumped model described by equations (2.1) and (2.2). That simple system identifi-
cation delivers a first prediction of the mechanical behavior of the loudspeaker for
low frequencies, and small signals. It was applicable up to the cone breakup fre-
quency where the cone still behaves as a rigid piston. The measurement method is
based on sine excitation and proceeds in two successive parts, involving added mass
or loudspeaker enclosure [14-17].

In a seminal paper, A. J. M Kaizer, in 1987 [2], approximates the most prominent
nonlinearities (force factor Bl(x), self-inductance L(x), stiffness k(x) ) by polynomials,
then expresses the response of the system to exponentials in term of Volterra series
[18].

The output of the system is written as:
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with:

yn(t) = /.../hn(TL...Tn)u(t—ﬁ)...u(t—Tn)dﬁ...dTn

Where u(t) is the input signal and h, (7, ...7,) is the Volterra kernel of order n

In the same paper, a inverse Volterra filter is derived and used for loudspeaker
linearization. The Volterra expansion and the inverse filter are limited to low order
(Q=3).

That paper has proven to be very influential and different approaches have been

proposed in the same direction [3, 5]

u(t) »ﬂ\ - H y(t) -

NL

Figure 3.1: non-linear feedback followed by linear block diagram from Klippel

The white box approach is still very alive but is limited to low frequencies and low
order nonlinearities (typically two or three). The linearization based on the resulting
model is not exact and tend to introduces higher-order distortion [9)].

It is worth noting that all linearization are based on feedforward controller because
a feedback control is not practical and too costly for most of loudspeaker usages (e.g.

cellphone).



CHAPTER 3. PREVIOUS APPROACHES 14

3.2 Black-box (1990’s)

While the white box approach continued to be researched, in the 90’s, some put aside
the physical model as too simplistic and explored input/output model with no physical
insight. First one to be studied was NARMAX (Nonlinear AutoRegressive Moving
Average with eXogenous input), in the time domain [4]. With a NARMAX model,

we have a time-domain input-output mathematical relationship of the following type:

Y = f(Yr—1, Y2y - Ytmn, Uty U1y oo Uiy, €41, €4—2, ...C4—q) + €4

y being the output, u the input, e the output noise and f(.) a nonlinear function (e.g.
polynomial).

Other attempts were made in the frequency domain, using a general Volterra model
[7]. Volterra models are interesting because of their standard and general approach.
They relate immediately to the frequency domain and provide generalized frequency

responses, but their complexity is such that the order is limited practically to three.

3.3 Block Model (2000’s)

This last decade, the research has focused on finding a practical and simple approxi-
mation instead of a comprehensive model.

In 2000, Angelo Farina issued a paper that had a strong influence on the elec-
troacoustic community [19]. He showed that by using a exponentially swept sine
excitation it was possible to measure the free field response of a transducer in an
ordinary room subject to echos and reverberation. Moreover that input signal made
possible to have separate access to the linear response and all the individual harmonic
nonlinear responses. Although that study stop short of system identification the un-

derlying model is a simplified Volterra model with diagonal kernels h,,(t,t...t) = h,(?)
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The output of the system is then:

Q

y(t) =D u(t) % ha(t)

n=1

This is the equation of a parallel Hammerstein system (see 3.2).

h 4

5

h.(t)

—» (f —» h)

—» (f —» h

E—r (y —» hi)

Figure 3.2: Parallel-Hammerstein System

The above work has been pursued in [12] to obtain a proper identification of each
path, more exactly of each transfer function h,,.

This model is appealing by its simplicity (one FRF by order of nonlinearity) and
its scalability ( branches are added for increasing order), but it seems pretty remote
of the physical model and somehow artificial. In particular, it does not model the
nonlinear feedback mechanism of the physical model [13].

Independently, [9] proposes a modified Wiener-Volterra model (see fig.3.3), that
has the property of having an exact inverse. That makes it suitable for loudspeaker
linearization, by derivation of a predistortion filter.

It is interesting to note that the parallel-Hammerstein and the Wiener-Volterra

models cover the full acoustic frequency range contrary to previous models.
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Figure 3.3: Wiener-Volterra System
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Chapter 4

Polynomial Nonlinear State-Space

Model

In this chapter the Polynomial Nonlinear State-Space (PNLSS) modeling is intro-
duced [20,21], with application to nonlinear modeling of loudspeaker through some
illustrative examples. An identification procedure is proposed consisting of two parts:
frequency domain subspace identification for the linear parameters of the PNLSS
model and time domain nonlinear optimization for the nonlinear parameters. Simu-

lation and experimental results are presented and discussed.

4.1 Nonlinear State-Space Modeling

4.1.1 Frequency Domain Block Model

In the last decade many papers have been published on the frequency domain ap-
proach (see [22], [23] and the references therein). The general approach is the follow-

ing:

1. Find the Best Linear Approximation (BLA)
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2. Identify the added nonlinearity,

which is practical and well-suited for weakly nonlinear systems.

—U} Nonlinear System —Y}

Random Input @

U Linear System Y
’ . y AN }
R Y

Y

S
Nonlinear Noise

Figure 4.1: Nonlinear system with random input and its equivalent linear system +
nonlinear noise source.

This approach is justified by the following fact that a Volterra system subjected to
Gaussian random input is equivalent to a linear system with an added noise source
at the output [18,23]. That concept is illustrated by fig. 4.1. The linear part Yz
contains all the contributions coherent with the excitation and the nonlinear part Yg
gathers all the non coherent contributions. For example, for each frequency w, Ys(w)

is the sum of contributions like:
Hj(wy,wa,w —wy — wa)U(wy)U(we)U(w — wy — w) (4.1)

where Hj is the Volterra generalized frequency response of order 3 and w; + wy #
0. This contribution is a combination of inputs at other frequencies and has a net

random phase unrelated to the phase of the input U(w). Yg(w) being the sum of
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these random contributions cannot be distinguished from a noise. Even and odd
order contributions of different orders add up to Ys(w) as long as the sum of the
different frequencies involved is equal to w. We can have a coherent contribution in
the special case of odd orders with frequencies that cancel each other in pairs. In
the example considered, if wy +wqy = 0 we have: Hj(w;, —wy, w)U(w1)U(—wr)U(w) =
Hj(wy, —wi,w)|U(w)]?U(w) which has a fixed phase in regard with the input U(w).
This coherent signal cannot be distinguished from a linear contribution and introduces
a bias on the linear response H;(w) . Finally it is worth noting that even if the
nonlinear contributions appear like an added noise, they are deterministic for a given
realization of the input signal.

Using these considerations a general purpose and flexible block model is proposed
as shown in Fig. 4.2. It is a parallel structure with each branch representing a
typical situation. The 1%° branch is simply the linear case (¢ is a pure real gain).
In the following branches NL; are static polynomials systems. The 2"¢ branch is
Hammerstein system. The 3' branch is a Wiener system. The 4" branch is a
cascade approximation of a nonlinear feedback. Note that linear block G is the same
in all branches. That model is identified in successive steps. First the best linear
approximation of the overall system is identified and inserted as G in all branches.
Then the active branches are selected based on their power contributions. Finally
the polynomial NL; of the selected branches are identified. This approach seems well
suited to loudspeaker identification. In particular, the nonlinear feedback that is part

of electrodynamic loudspeaker mechanism can be identified.

4.1.2 Theory

The analysis of previous section encourages one to look into approximation of non-

linear state-space representations to obtain a proper model for loudspeakers.
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Figure 4.2: Generic nonlinear model for frequency domain identification.

The most general representation of nonlinear system in state space notation can be

expressed as:

(t) = f(z,u,t)

y(t) = h(z,u,t) (4.2)

for continuous-time system, where z € R”, v € R™ and y € R'. The analysis and
design of nonlinear system (4.2) is not a trivial task.

PNLSS

Recently the following class of Lipschitz nonlinear systems has attracted a consider-

able attention [24]:

i(t) = Az + Bu+ Ep(x,u)

y(t) = Cx + Du+ Fq(x,u) (4.3)

where p(t) = p(z,u) and ¢(t) = q(x, u) satisfy the Lipschitz condition. Note that
in this case the nonlinearity is in additive format. It can be shown that applying
functional expansion of the function f and h in (4.2) with various kinds of basis

functions, one can arrive at (4.3). In this paper, a set of polynomial basis functions
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is chosen due to computational simplicity and its advantage in our application. The
PNLSS model is defined by (4.3) consisting of the linear terms in x(t) and u(t)
with constant coefficient matrices A, B, C, D, E, F and the vectors p(t) € R™
and ¢(t) € R"™ containing nonlinear monomials in x(t) and u(t) of degree two up
to a chosen degree r, where the coefficient matrices E and F contain the coefficients
associated with those monomials. Note that the monomials of degree one are included
in the linear part of the PNLSS model structure. When a full polynomial expansion
is carried out, all monomials up to degree r must be taken into account. First, a

vector z is defined as the concentration of the state vector and the input vector as
2(t) = [z1(t) ... 2n(D)ug(t) . . um (H)]F (4.4)

As a consequence, the dimension of the vector z(t) is given by n,= n+m. Then, using

the conventional index notation for monomials we define:

p(t) = q(t) = 2() ) (4.5)

Note that the vector z(t)g) as defined in (4.5) should contain all monomials with a

degree between two and r. For instance, the vector zy3y with n,= 2 denotes

23y = [Z(Q)Z(g)]T = [Zf,zlzg,zg,zf,zfz% zlzg, zS]T (4.6)

where we define z(,) as the vector of all the distinct monomials of degree r composed
from the elements of vector z. The number of elements in vector z) is given by the

following binomial coefficient

er(nz—l—r—l) @

Thus, the vector zgy has the length

L, = (” + 7") —1-n, (4.8)

r
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and corresponds to considering all the distinct nonlinear combinations of degree r,
which is the default choice for the PNLSS model structure. The total number of

parameters required by the model in (4.3) , is given by

N:K"er”)—l} (n+1) (4.9)

r

4.1.3 Illustrative Examples
Duffing Oscillator

Duffing Equation: damped mass-spring system with hardening spring.
mi +ri + k(1 + ¢?2%)r = u (4.10)
State-space Equation in continuous time:

A AN A T
2 =X, =1,2 = (21, 22)

21222
. k r 1 k
_ 2.3
Zg=——21— —2+ —Uu— —q°2
m m m m
y=x

State-space Equation in discrete time:

2(t) = (x(t + T's) — 2(t))/T;, Euler approximation with sampling period T

G = x(nTy), G = @ (nTy), ((n) = (Gi(n), G2(n))"

CG(n+1) = G(n) + Tiz(n)

k

T, rT, T,
Gi(n) + (1 -
m

oln) + uln) g2 m)

Cg(n—i— 1) = —

m

y(n) = Gi(n)
Numerical example:

e m=1435¢g
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r= 0.786 N.s/m

k= 1852 N/m

¢ = 3.33 x 10°

T, = 44100 Hz

Resonance frequency is given by: fo = % % — 2’;22 = 56.84 Hz

The sinusoidal excitation frequency is set at 56 Hz for an FFT size of 48000 (1 Hz
resolution). Two experiments are made : one with an amplitude of 9 N, the second
with 100 N. At 9 N strong harmonic distortion appears (fig. 4.4, fig. 4.5). At 100 N
the response shows chaotic behavior (fig. 4.6, fig. 4.7).

Duffing Eg- Hardening Spring
SDD T T T T T T T T T

600

400

200

FarcalM]
[ )

-B00 I 1 1 I 1 1 I 1 1
-10 -8 -G -4 -2 1] 2 4 ] a8 10

Displacerment [rm]

Figure 4.3: Stiffness k(1 + ¢*z?) vs. displacement x
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Duffing Eg- Sine resp- Amplitude: 9N
4 T T T T T T

mm

Figure 4.4: Time response to sinusoidal excitation 56 Hz, 9N

Dufing Eg- ML Sine resp- Amplituds: 9
1 D T T T T

1oL -

-20 - _

Aok _

40 L -

dB

oL -

-B0 |

ok -

_an b M a

-qg M| M MR T Ll L
107

10 10 10 10° 10°

Hz

Figure 4.5: Frequency response to sinusoidal excitation 56 Hz, 9N
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Duffing Eg- Sine resp- Amplitude: 100
1 D T T T T T T T T T

= |
IS

2L

4L

6L

10

Figure 4.6: Time response to sinusoidal excitation 56 Hz, 100N

Duffing Eg- ML Sine resp- Spechrum: 100N

Figure 4.7: Frequency response to sinusoidal excitation 56 Hz, 9N
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Simulation with Simulink (see fig. 4.8), fixed step= 1/44100, Euler (odel) gives

same results.

I +
F hl —
Sine Wave o i L I 1 ';[?_\ ';I I
- a 3 [ s | = I//'
- 1iMasse Integrator Integratord Gait Scope
Al
{-f];l:
Friction
@;I:
Spring
1 oo
Je . 3
Spring Hardenin Kath
pring 9 Furction Constant

Figure 4.8: Simulink diagram of Duffing oscillator
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Van Der Pol Oscillator

Van Der Pol Equation:

mi — (1 — v +v=u (4.11)
State-space Equation in continuous time:

22 (v,9)" = (21, 2)

2.1222

- 2
Zo = —Z1 + €29 + U — €27 22
y=z

Euler approximation: o(t) ~ (v(t +T's) — v(t)/Ts, with sampling period T
G = 2(ny), & £ &(nTy),((n) £ (Gi(n), G2(n)"
G(n+1) = Gi(n) + Ti(n)
G(n+1) = =T (n) + (1 + €T3 (n) + Tyu(n) — €Tx¢F (n)Ca(n)
y(n) = Gi(n)

Numerical example:

Sinusoidal excitation: u = Usin(wnTs) with:

e ¢ =38.53
e U=1.2
o w=21/10
o T, =1/100

With that excitation, the oscillator response is chaotic (see fig. 4.9, fig. 4.10).

Simulation with Simulink, fixed step= 1/100, Euler (odel) gives same results.
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YanDerPol Eg- ML Sine resp- Amplitude: 1.2
25 T T T T T T T T T

2 -

1.5+ -

1L _

0.+ -

> 0Of -

-0 - -

AL

5B .

-2 4

25 I 1 1 I 1 1 I 1 1
g00 910 920 830 940 950 860 a70 930 8490 1000

s

Figure 4.9: Time response to sinusoidal excitation 0.1 Hz, 1.2N

YanDerPol Eg- ML Sine resp- Specium: 1.2H
4D T T T

-80 1 TR | R SR | I SR | I S
10 10 10 10 10*

Figure 4.10: Frequency response to sinusoidal excitation 0.1 Hz, 1.2N
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H+
+—t ' 23

Site *:";ve —"; ol ;_ ' o ;_ FI:l
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Figure 4.11: Simulink diagram of Van Der Pol oscillator

4.1.4 Loudspeaker PNLSS Modeling

In this section we focus on the loudspeaker electromechanical part and we show that

a Taylor expansion of its parameters leads to a PNLSS model. The SS model (4.23)

with current output is described by:

0 1 0
A=|_%& _r Bl
Bl R

0 -7 I

With state vector:
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Observability

The observabiltity matrix is:

CA?
The determinant is: [O| = (2)2£ > 0 for all real loudspeakers. Therefore the system
is observable from the current output, meaning that position and velocity can be

recovered from the voltage and current. That can be achieved for example by a state

observer like the Luenberger observer.

Polynomial Approximation of Nonlinear Parameters

The voice-coil inductance L is function of excursion x because the coil moves relative
to the pole pieces.

The force factor Bl is the product of the magnetic flux density by the coil length. Bl
change with coil position in regard to the magnet and is then a function of x.

The stiffness k of suspension is also function of x as it becomes harder as the magnitude
of excursion increases.

Therefore we can express the SS matrices as functions of the excursion x:

0 1 0
Alz)= | == _r  Bl=)
_Blx) _ R
0 L(x) L(x)

B(fc)=<o 0 ﬁ)T

Using the same approach as in [2], L, Bl, and k are approximated by second order

polynomials. That approach is justified by the fact that L, Bl, and k are usually
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smooth functions of the excursion [8].

oy
~—r

(z A 2
= Qo+ 1T + asx

2 B

3|

=
&

2 90+ + e’

ZE) é 50 —f- 51[E + (52%2

A
——— =€yt €1 x+ 62$2

——— £ g+ + o2

Assumption: the electrical inductance L(x) doesn’t vanish in the excursion range of
the loudspeaker. In other words, the voice coil doesn’t escape from the magnet.

Then the state matrix can be expressed as:

0O 1 0 0O 0 0 0 0 O
Al)={ao Bo |+ |as 0 |zt ]z 0 % x?
0 (5() €0 0 51 €1 0 52 €2

A

= AO + AlfL‘ —|— AQIL’2
And the input matrix:
T T T
B(z) = (o 0 uo) + <0 0 ,Ul) x + (o 0 uz) a?
2 By + Biz + Bor’

Reminding that the excursion x is the first entry of the state vector z = (x i Z’>,
and after re-arranging the terms the state equation can be rewritten as:
2 = (Agz + Bou) + (A1212 + As2?z + Byziu + Boziu)

Z is the sum of a linear part and nonlinear part. The nonlinear part can be expressed

in terms of monomials of order 2 and 3 of z1, 29, 23, u.

A2z + Ag2iz + Bizu + Byziu = EP(27 u) (4.12)
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where E is a constant matrix and P(z7,u) is the vector of all monomials of degree 2

and 3 of z1, 29, 23, u.

P27, u) has (*271) + (4+§71) =10 + 20 terms and E € R3*%.

T 2 2 2 2 3

P(Z ,U) = (21,2122,2123,21?,6, R9y #2%3, 22U, 23, 23U, U, 27,
2 2 2 2 2 2 .3
212’2,212’3,21’&, 2122,21222’3,2122U, 212’3,2123U, AR ,22,

2 2 2 2 .3 .2 2 3T
2523, 23U, 2225, 223U, ZoU°, 25, 23U, Z3U°, U )

Expanding (4.12) yields:

0
EP(z" u) = 122 + 012123 + a2 + 092323
012120 + €12123 + 121U + 022325 + €222 23 + poziu
By identification, the coefficients of E follow:
i 212121213 [3[3]3]3]3

g |13 (11131234 |12|13 |14

E<i7j) ap | 0y | ag | 0o | 01 | €1 | pr | 2 | €2 | po

E(i,j) = 0, otherwise.

E is sparse. Only 10 coefficients are non zero amongst 90.

Altogether, in this section, we have shown that by taking in account the nonlin-
ear variability of the loudspeaker parameters and using fair approximations, one can

obtain quite straightforwardly a PNLSS modeling.
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4.2 Identification Procedure

In this section, we present an overview of the PNLSS identification procedure in three

steps. We follow up with a detailed description of each of them.

4.2.1 Procedure Overview

The identification procedure for PNLSS model consists of three major steps. First, the
BLA of the system under test is determined non-parametrically in the mean square
sense. Then, a parametric linear model is estimated from the BLA using frequency
domain subspace identification method [25]. The last step consist of estimating the
full nonlinear model by using a nonlinear search algorithm that minimizes the model

output error in regard to the measured output. Procedure:

1. Frequency Response Function (FRF) estimation with periodic random phase

multitone and frame-averaging.
2. Frequency Domain Subspace Identification:

(a) Get FRF values and their sample variance, for some appropriate subset of

frequencies
(b) Estimate an extended observability matrix of O, with sufficient rank r
i. Construction of matrix Z as a frequency weighted input-output mea-
surements compound matrix
ii. Elimination of input term by QR factorization of Z
iii. Reduction of noise influence by SVD of the factored term weighted by

inverse of the variance and estimation of O,

(c) Estimation the system matrices fl, C by least-squares solution of O, recur-

sive equations
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(d) Remaining system matrices B, D estimation by weighted linear least-square
regression w.r.t measured FRF

3. Nonlinear Least Square Time Domain Identification:

(a) Time Domain Error Minimization by Iterative Procedure
(b) 0 = [Vec(E),Vec(F)] vector of polynomial coefficients
(c) Parameter update uses Levenberg-Marquard algorithm
(d) Final parameter § minimize the residual error ||r(t)]|.
(e) This final step estimates the polynomial coefficients E , F
It should be pointed out that a parallel treatment of previous section for discrete-
time nonlinear system can be established. This is convenient for system identification

process. In this case, without loss of generality, we see similar state space notation

as follows:

z(t+1) = Az + Bu+ Ep(t)

y(t) = Cx + Du+ Fq(t) (4.13)

4.2.2 Best Linear Approximation

In this section we show discuss the method used to estimate the Best Linear Approx-
imation of the system under test.
The method described below is inspired from [26]. As an input signal, we use a

multisine with flat spectrum and random phases:

N
u(t) = Uo\/%z cos (wxt + ¢r)
k=1

The resulting signal has an rms value of Uj.

The use of harmonic frequencies ensures a periodic signal: wy = 27r%.
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The phases are random, uniformly distributed on [0, 27).That phase pattern ensures
a signal with random values and an amplitude distribution that tends asymptotically
to a Gaussian law when N — oc.

A general input sequence is composed of M x (P + 1) periods of multisine. Each
sequence of P+ 1 periods uses a particular realization of the random phases sequence,
and M successive realizations of the phases leads to M x (P + 1) periods of multisine.
Periodic signal allows to average out the output noise and different realizations of the
random phases pattern allow to average out the nonlinear amplitude distortion. For
each realization, the first of the P+ 1 periods is disregarded as it contains the settling
transient of the system.

For each period p of realization m, the DFT of input period is denoted by U™?!(k)
and DFT of output period by YI™#(k).

Averaging is done first along the P periods of each realization m:

U[m](k) = U[m’p](k),‘v’p, assuming no input noise

P
~ 1
[m] — [m.p]
p=1
. " [m]
GIml(k) = = (£)
Ol (k)

Finally the BLA of the system FRF is obtained by averaging over M realizations:

G(k) = — 3 G (k)

m=1

The total sample variance of the BLA is obtained by:

1 K.
og(k) = VA > |G (k) —

m=1

(Y

(k)[?

The variance due to the measurement noise can be estimated separately by averaging
over the P periods of each realization. The variance due to nonlinearities can then

be deduced by subtracting the noise variance from the total variance.
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The nonlinear contributions can be minimized by using only odd order harmonics
in the multitone stimulus [23,26]. Indeed, even order distortion produces only com-
ponents at even frequencies that do not fall on the excitation lines. Over types of
multisine (odd odd, quasi-log,...) are described in the aforementioned references with

their specific advantages and case of use.

4.2.3 Frequency Domain Subspace Identification

In this section, we expose a method to find a linear subspace model that fits the

measured FRF G(k) in the LS sense.
Model Equation
We have:

xz(n+1) = Az(n) + Bu(n)

y(n) = Cz(n) + Du(n) (4.14)

In case of periodic input, when the system is the steady state, the DFT of (4.14)

yields:

%X (k) = AX (k) + BU(k)

Y (k) =CX(k)+ DU (k) (4.15)
Where:

k=1...F, frequency index

=2

1 )
F(k) = TN f(n)e 7 DFT of f=u, x, y

n

I
=)

Rk = Gijwk
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We assume an integer number of period on each DFT block. Considering a flat input
spectrum U (k) = 1, we derive the FRF form of the equation (4.15):

G(k) = CX (k) + D (4.16)

Recursive use of these equations gives:
G(k)=CX(k)+ D
22G(k) = CA*X (k) + CAB + 2,CB + 2D

27'G(k) = CA™'X(k) + CA" B+ 5CA" °B+...2, 2CB+ 2z, 'D

Written in a matrix form:

W, (K)G(k) = O, X (k) + S, W, (k) (4.17)

with:
W, (k) £ (1, 2z, . .. z,’;_l)T eCr
0, 2 (C,CA,... C’AT_l)T € R"*"a

D 0 -0 0
N CB D 00
Sr L c RTXT
CA™2B CA™3B --- CB D

Note that O, is the extended observability matrix (r > n, ) of the studied system

and S, is the impulse response matrix.
Collecting (4.17) for all frequencies k = 1... F gives:

G=0,X+SW (4.18)
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with:
G2 (W.(1)G),... W.(F)G(F)) € C™*F
X2 (X(1),...X(F)) € RraxF
W, 2 (W,.(1),...W,(F)) € C™F
Finally the real and imaginary parts of each matrix are written side by side using

the following convention: (.)™ = (Re(.),Im(.)). That last step result in the real

coefficients equation model:

G =0,X"+ S, W (4.19)

Noise Model

Let the model (4.19) be observed with noise at the output leading to errors on the
estimated FRE":
G(k) = Go(k) + Ne (k)

where G(k) is the real FRF and Ng(k) represents a zero-mean circular complex
random error.
Defining:

Ne £ (W, (1)Na(1),... W,(F)No(F)) € C>F

We write the equation of the model with added noise:
Gre — 0,%7 1 S, W™ + N (4.20)

Algorithm

Subspace algorithm with non-uniform frequency data and sample noise covariance

from algorithm 2 in [25,27].
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1. Get FRF BLA G(jwy) and its sample variance 62 (jwy), for the set of radial

frequencies {wy;k = 1,... F} . In the following we denote G (jwy) £ G(k).

2. Extended observability matrix given r > n,, with r chosen in the range [1.5n,, 6n,]

(a) Construct the following matrices:

=" k=1...FeCF
Wok)=(1,2...2; HT eC

W = (W,(1),... W,(F)) € C*F

G = (W,()G(1)... W,(F)G(F)) € C™*F
W™ = (Re(W), Im(W)) € R
G = (Re(G), Im(G)) € R"

7 = (W, Greyl e RE<er
Cin = W, (1)6c(1) ... W, (F)ég(F)) € CF

Cq = Re(Ci, Ty e R™"
(b) Elimination of input term by QR factorization

Z'=QR < Z=RTQ"

L [0 fer) (W
R, RL ) \ Q% Gre

Rij c R™xT
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Rys is the projection of G on the subspace orthogonal to the input W7,
RHQ1T = Wre

RlQQ,iF + R22QT =G

From (4.20), it follows that:
Gre = S,W™ + 0, X" + N = Ry»Q¥ = 0, X" + Nif

(¢) Noise reduction by SVD and estimation of the extended Observability Ma-

trix.
Cg'?Ry, = AXTT
0, = C’é/ZA[:, 1:ng)
where:

A is the matrix of left singular vectors
3} is the matrix of singular values
I' is the matrix of right singular vectors

A

O, is the matrix of first n, left singular vectors.

3. Estimation of A and C

OFf[1:r—1,]0,[2:r,], LS estimate of A

Q> :1>>
I

O,[1,]
4. Estimation of B and D by weighted LS

1 . .
|G (k) — C(z1,, — A)'B — DJ?
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The cost function to minimize can be written in the form:
J=(G—HB"W (G- Hp)

with:

C’(zllna — A)il 1
H = c CFX(naJrl)
O(ZFIna — A)_l 1
B=(B",D)" € RI™*

W = diag(65°(1),...,65%(F)) € RF*F
The minimization is achieved for ( [27]):

g—‘éym =0 = B =Re(H'"WH)'Re(H"WGQG)

41
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4.3 Nonlinear Least-Squares Identification

The final step following the Frequency Domain Subspace Identification is the estima-
tion of the nonlinear parameter matrices E, F' by minimization of model output error
in the time domain. The model output error is the difference between the system’s
measured output and the model output for the same given input (see fig. 4.12). As

a reminder, the model we want to identify is the following PNLSS model:

z(t + 1) = Az(t) + Bu(t) + Ep(t)
y(t) = Cx(t) + Du(t) + Fp(t) (4.21)
A, B, C, D are supposed to be known from the previous step. The vector p contains

all monomials of degree 2 to d from states and input. For simplification, without lack

of generality, the same monomial vector is used for both equations.

u(t) y(t) r(t)

————» Speaker ————» 1117

y'(t)

— > Model

\

Parameters
Update

Figure 4.12: Nonlinear Least-Square Optimization Block Diagram
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4.3.1 Levenberg-Marquard Algorithm

Definitions

y € R™ vector of measured output samples
y € R™, vector of model output samples
0 = vec(ET, FT) € R™, vector of nonlinear parameters to estimate

where:

E € R%xme [ ¢ R

ne+1+d
’)’Lp: d —na—2

ng = (ng + 1)n,
r(0) £ §(0) — y € R™, vector of residual errors(m > ng).
1
f(9) = §||r(9)||2, € R, cost function to minimize

Jacobian of residual vector r:

J(0) £ - e R

06

Gradient of cost-function f:

T
Vi) e - (% ) r = JTr € RUsn

Hessian of cost-function f:
s Of

H(0) = 555 ~ JTJ € Rroxno
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Calculus of Jacobian

. . . o~ o o .
Considering that: 7 = ¢ —y and 3§ = 0 then:

or 0y
10 =%= %

Each row of J is the gradient of the corresponding model output sample in regard to

the parameters E, F.

D — 0, J(@) can be derived as :

As shown in [28], using (4.21) and considering gg(. ;

Ox(t+1)  Ox(t) Op0x(t) OF
o5, “‘om, rosom, tor, "W
oy(t)  0x(t) Op 0x(t)
8Ei,j - O@Ei,j + F@x aEiyj
oy(t) OF
o = Sl (4.22)

This set of equations allows to calculate recursively each element of the gradient
J(0), one row at a time. As seen in section 4.2.3, the Jacobian is the output of
a dynamic system and must be calculated recursively for all output samples of the
PNLSS model.

Expansion of %:

Let’s define:

concatenation of state vector and input scalar.
Then:

p(t) = &ay(t) € R"™, vector all monomials of degree 2 to d
The i’ entry of p(t) is the following monomial:

pi =% = x?i(l)  pei(na) g, @i(nat1)

. Na

with:

L

a; = [a;(1), ... a;(ng, + 1)], vector of monomial exponents
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Each monomial is of degree 2 to d, meaning Z?:{l a;(j) € [2,d].

We can finally write:

L N S e T
] R
Opi = o;(j)psx; !, if p; contains ;
8[Ej 7 !
= 0, otherwise
Ezpansion of 8%E_ -p:
0 0 - 0
or
o8, |" ! !
0 - 0 --- 0

is a sparse matrix of n, rows by n,, columns, with 1 at row i, column j and 0 elsewhere.

oF _ T
3Ei,jp_ (0...0,p(5),0...0)".

is then a vector of n, elements with p(j) at position i and zero elsewhere.

Ezpansion of %p:
J

Similarly as above:
OF
— =(0...0,1,0...0
aF] ( ) ) )

is a sparse row vector of n, elements, with 1 at column j and 0 elsewhere.

Multiplication of that vector to p extracts the j% entry:

oF
oF,
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Algorithm

[I>
[\
-
—~
e
=
=

In this algorithm, we choose to minimize the relative rms error: p(6)
instead of f(#) because it is easier to set limits on it. begin
6= 0, initial parameters;
calculate residual r(#), relative rms error p(6) = ||7||/l|7]l;
calculate Jacobian J, gradient V f(6) = JZr, Hessian H = J J;
A=1,i=1,a=10;
§ = 1073; %to be adjusted
imax= 10; %to be adjusted
0 =0 — (H + \.Diag(H)) 'V f(0); % parameters update;
calculate new residual r(0’), new error p(');
while (p(¢') > 0) and (i < imaz)
if p(6') > p(6)
A = A.a; % increase A;
% and do nothing else: new parameters are rejected;
else;
A = M a; % decrease \;
0= 0’; % accept new parameters;
calculate residual r(6), error p(0);
calculate Jacobian J, gradient V f(¢), Hessian H;
end ;
0 =60 — (H+ \.Diag(H))" 'V f(0); %parameters update;
calculate new residual r(0’), new error p(#');
i= i+1;
end ;

0= 0’ %final parameters estimate ;
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end.
The algorithm presented is inspired from [29,30]. As shown in [29], the parameters
update equation: ¢ = 6 — (H + X.Diag(H))"'V f(f) is a combination of Gradient

descent and Gauss-Newton method.

Validation

For validation of the Levenberg-Marquardt algorithm, we use a simulated non-linear

model based on a state-space representation of an existing loudspeaker.

0 1 0 0
i=|-L . Blz4 |y u 2 Az + Bu (4.23)

Bl _R 1

0 -7 -1 I

o m=14.35 ¢
e 1= (0.786 N.s/m

e k= 1852 N/m

e Bl=4.95 N/A
e L= 266 uH
e R= 3.3 Ohms

To get the cone velocity, we use the output equation given by (2.4). The transfer
function is multiplied by s in the Laplace domain to get the acceleration which is
proportional to the acoustic pressure. That yields a new set of state-space matrices
for acoustic simulation of loudspeaker. That set is translated in the digital domain
using bilinear transform (Tustin method). For the non-linearity, we use an order 2

monomial vector: p(t) = xy2)(t). The non-linear parameter matrices E, F are set as
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uniformly equal to 107°.
The stimulus used is a full multi tone of unity spectrum magnitude and random

phases uniform on [—, 7].

4.3.2 Identification of Continuous-Time Model

The methods described above are aimed at Discrete-Time (DT) models identification.
Special care must be taken to apply them to Continuous-Time (CT) model. First,
the assumption is made that the output signal power is band-limited. It is a perfectly
reasonable assumption for loudspeaker study. Then the Bilinear Transform (BT) is
chosen to relate DT to CT. It is known that he use of BT allows to identify continuous-

time system in the discrete-time domain without loss of precision. Definition of BT:

2z—1 24+ Ts
S = — < 2z =
Tz+1 2—Ts

where:
s= complex frequency (CT)
z= complex frequency (DT)
T= sampling period
Then the relation between CT and DT transfer functions is the following:

2z—1
Tz+1

G(s) = G( ) = Ga(2)

The BT relates the CT frequency to the DT frequency in the following manner:

oot L2612 (wd)
z=eY = s=jw=—-—7——=j—=tan(—
T T
2 d T
W= tan(%) —= wl= 2arctan(5w)

where the superscript d denotes the discrete domain. CT and DT frequencies are

related by a frequency warping that maps the range [—oo, +00| to [—m, +7].
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Moreover, the CT and DT state-space matrices are related by [31]:

A= %(Ad + 1) (A= 1T)
2
B=—(A"+1)"'B"
VA
2
C=-—=CYA"+1"
N
D=D*—CYA*+ 1) 'B? (4.24)

Then the identification procedure for CT system is the following:

1. Measure M samples of the FRF from DC to Nyquist.

GkéG(jwk), k=0...M -1

2. Apply BT to get the DT equivalent of the FRF samples:
G & Gi(elh) = G(jwr), k=0...M—1
with:

wil = 2arctan(Zwy)
3. Resample G? at equidistant intervals
4. Extend G? on full circle [—, +7]

5. Estimate the DT state-space matrices A%, B? C?% D% by Frequency Subspace

Identification

6. Recover the CT state-space matrices A, B, C, D using the relations (4.24)
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4.4 Simulations and Experimental Results

This section produces results that illustrate the identification procedure.

4.4.1 Simulations

First, the FRF of the loudspeaker simple model is identified using BLA followed by
frequency subspace identification technique. The continuous time model is transferred
to the digital domain by bilinear transformation. The BLA measurement is simulated
by applying a input excitation into the state-space model of the loudspeaker, and
estimating the transfer function between input and output. The input signal is a full

multi-sine with flat spectrum and random phase:

N/2

1 - 2T
ut) = = D,

n=—N/2

with:
¢, = random variable uniform over|0, 27]
gb—n = ¢;:

$o = dnj2 =10

Although the power spectrum of a multi-sine is perfectly flat, the amplitude distribu-
tion is Gaussian, due to the random phases. That makes it a suitable signal to test
nonlinear systems. Fig. 4.13, 4.14, 4.15 show respectively the time domain, histogram

and spectrum for an example of stimulus.

In our simulation, the FRF estimate is obtained by repeating the multi-sine twice
and using only the second block, as to avoid the transient state and measure the

system in its steady state. The duration of each block is verified to be much greater
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Figure 4.15: Random Phases Multisine- Spectrum

than the impulse response. The FRF is then simply obtained by dividing the DFT
of the output by the DFT of the input. The FRF obtained is then fed into the
Frequency Subspace Identification algorithm to obtain a state-space estimate. The
state-space model is then used to obtain an FRF estimate which is compared with
the original one. The results are presented in Fig. 4.16. The real FRF, the measured
and the identification results are superimposed. The measurement error is about 300
dB down and the identification error is about 200 dB down. The measurement error

curve is defined as:

Gjw) = G(w)|
|G(jw)]

where G is the measured FRF and ( is the estimated one.

err(w) = 20Log1o (4.25)

These results validate the Frequency Subspace Identification procedure. The next
step is to examine how the frequency identification behaves in presence of nonlinear
perturbations. For this purpose a PNLSS model (4.21) is constructed by adding a
state monomial of degree two weighted by E and F where all the coefficients are

set to —107°. The input signal is made of several consecutive blocks of multi-sine,
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Mode| Identification of Simulated Loudspeaker (Linear)
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Figure 4.16: Model Identification of Simulated Loudspeaker (Linear)

each of which with a different phase pattern so as to excite the nonlinearity in a
random fashion. The BLA of the FRF is obtained by applying a Welch algorithm on
the input-output pair. The DFT of each pair of input-output blocks are calculated
without overlap and with a flat windowing. The FRF is estimated by taking the

quotient of the input-output cross-spectrum over the input auto-spectrum:

That method is known to give the BLA of the FRF in presence of output noise.
That choice is justified by the fact that the random phase multi-sine has a Gaussian
amplitude distribution. The nonlinearity acts then as an added noise source at the
output. The FRF is then feed into the Frequency Identification algorithm as before
and the FRF of the identified system is compared to the real (linear model) FRF.
The results are shown in fig. 4.17 for an input rms level of 1073,

Due to the nonlinearity , the measured FRF and the linear FRF are now different.
The measurement error, which is the difference between the two, shows the added

nonlinear noise. The noise spectrum has a level between -30 and -60 dB. The identi-
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Mode| lIdentification of Simulated Loudspeaker (Monlinear)
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Figure 4.17: Model Identification of Simulated Loudspeaker (Nonlinear)

fication error is now much higher than in the previous experiment, and is especially
pronounced in the low frequencies (below 100 Hz). That error follows the spectral
distribution of the nonlinear noise.
Finally, to illustrate the last part of our three steps identification procedure the BLA
estimated from the nonlinear simulation is used as a basis for nonlinear optimiza-
tion to estimate the matrices of nonlinear coefficients E and F of the full PNLSS
identification model. For this purpose we apply a multi-sine signal to the simulated
nonlinear loudspeaker. The output response is then used in the nonlinear Least-
Squares algorithm along with the input signal and the estimated linear state-space
model parameters. The Levenberg-Marquard algorithm estimates the matrices E and
F by successive iterations such that it minimizes the difference between the observed
response and the PNLSS model output in the time domain. For the purpose of model
validation, a new test signal is applied to the simulated loudspeaker and the PNLSS
model to reconfirm the identification process. These results are shown in Fig. 4.18.
The initial relative error between the observed response and the output of the

BLA of the loudspeaker is about -22 dB. The estimation relative error is -80 dB, and
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Figure 4.18: Minimization of Output Error by Nonlinear Optimization

the validation relative error is -69 dB. The estimated PNLSS model output matches
extremely well with the simulated nonlinear loudspeaker response. This shows the

validity of our approach which has potential to be employed in loudspeaker technology.

4.4.2 Experimental Results

As an experiment, a random phase multitone has been fed into a loudspeaker of 2”
diameter. The stimulus contained 5 random phase realizations of 6 period each (see
fig. 4.13). The excitation level was 1 Vrms to ensure moderate nonlinearities and avoid
clipping. After averaging the resulting BLA has been submitted to the frequency
subspace identification algorithm (see section 4.2.3) several times with increasing
model order. The relative mean square error (RMSE) is calculated for each model

order as:
|G -G
|Gl

where G is the measured FRF and G is the estimated one. RMSE qualify the quality

rmse = 20Logyg (4.26)

of the fit and is plotted vs. model order in fig. The complex LS results is shown along
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Number of NL coeff for PNLSS model for different NL orders
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Figure 4.19: Number of NL coeff. vs. model order

for comparison. The Complex LS method [32] is implemented as invfreqz in Matlab.
Our subspace algorithm behaves clearly better. A minimum RMSE value of -28 dB
is obtained for a model order of 76. The magnitude curves and the error curve are
shown in fig. 4.20. The result is quite satisfying in term of accuracy. However the
model order is too high to pursue the estimation of the nonlinear parameters. The
number of nonlinear parameters of the PNLSS model grows considerably with the
model order even for low nonlinearity order as can be seen in (4.9). A model order of
76 with a distortion order of three yields 6 083 154 nonlinear coefficients to estimate.
The fig. 4.19 shows the evolution of the parameters number in regard to the mode
order for a few distortion orders.

To reduce the model complexity, a pole-zero pruning has been applied on the esti-

mated FRF, by:

e deleting poles and zeros far away from the unit circle, which have little influence
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Figure 4.20: FRF Identification (order 76) on measured FRF

on the FRF

e deleting the pairs of pole-zero close to the unit circle, which create small dis-

turbances on the FRF

In addition, to ensure the stability of the estimated model the poles outside of the
unit circle are pushed back inside. That has no consequence on the FRF. These
methods are detailed in chapter 6 . After model reduction, the FRF model was down
from 76 to 22, with an RMSE of -26 dB. The resulting curves are shown in fig. 4.21.
We see the error curve is more noisy as a consequence of the FRF smoothing, which
is not problematic. However, we see an error appear in the low frequency around
200 Hz where the FRF is oversimplified. We are at the limit of the model reduction
procedure and the number of parameters to identify is still very high: 52 371, for a

distortion order of only three.
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Reduced model order 22 vs measured FRF
10 L AR e —

~10F p .

2 20 ’,// .

30+ -

measured
error
identified

_50 . | . R N . L A L
10 10 10 10 10
Hz

Figure 4.21: Reduced order FRF (order 22) vs. measured FRF

4.5 Discussion

Our experiment brought us to the conclusion that the loudspeaker as a whole needs
at least about 20 states variables to model correctly its linear part and, even for low
order of nonlinearity, the number of monomials needed for a polynomial state-space
model is very high. As an example, a nonlinear order of three and 20 states variables
leads to 1750 monomials and 42483 parameters to identify [20]. The NL optimization
procedure cannot be applied. The system complexity has to be further reduced.
One way to proceed is to consider the loudspeaker as two systems in cascade: the
electromechanical part (the 'motor’), that transforms the input voltage (audio signal)
into displacement and the mechanico-acoustic part that transforms the displacement
into acoustic wave (the ’cone’). The hope is to be able to lower the complexity of
the parts to identify and then be able to apply the polynomial state-space system

identification on each part separately.
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Chapter 5

Fractional Order Model

In this chapter we focus on the motor identification. As we will show in the following,
the linear identification of the motor presents by itself specific challenges that requires
innovative solutions. The contribution of this chapter is the application of fractional
calculus to loudspeaker identification. To the knowledge of the authors, this is a novel

approach in that domain [33].

5.1 Fractional Order System

First we introduce the notion of Fractional Order System that will be of use in the

following sections.

5.1.1 Fractional Order Derivatives

The fractional order calculus has a long history and mathematicians tried to develop

theoretical results for it. Its development for dynamic systems is based on the general-

ization of the differential operator D; = % to Dy = %, where « could be a fractional

number, and for that matter, any non-zero real number. The advantages of fractional

derivatives become apparent in modeling of physical processes. Fractional derivatives
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and integrals also appear in the control of dynamic systems, when the system under
control or/and the controller is described by a fractional differential equation. The
mathematical modeling and simulation of systems described by fractional derivatives
leads to differential equations of fractional order and the necessity of solving such
equations. For a general exposition of fractional systems one may refer to [34,35] and
the references therein.

There are three equivalent definitions most frequently used for fractional derivative
of a function: Grunwald-Letnikov, Riemann-Liouville, and Caputo. The Riemann-
Liouville approach starts with generalization of Cauchy’s formulae for repeated inte-

gration to non-integer orders, defining the fractional order integration as:

t

FEI0 = D710 = o [ A=t ar (5.1
where I'(.) is the Gamma function defined by the following expression known as

factorial function
['(a) = /00 et tdt (5.2)

0

for which, when « is an integer, it reduces to the conventional factorial i.e. I'(a+1) =
a! The definition of fractional derivative can easily be derived by taking an n* order

derivative of an o' order integral to obtain an n — o = ¢ order derivative:

DIFO) = DI f10) = s DF [ 971t =)~ dr 5:3)
I'(a) 0

which is the Riemann-Liouville expression of fractional derivative. It should be noted
that for ¢ = 1(n = 2,a = 1), the above expression becomes the usual first order
derivative. Furthermore, most properties of conventional (integer) derivatives can be
extended to the non-integer order case. Since in the analysis of dynamic systems one
can take advantage of Laplace operator to represent the system by transfer function,
it is possible to write:

L{DFF()) = "L {F(H) = 3 s Dp~ 1 £(0) (5.4)

k=0
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which becomes very simple if all the derivatives are zero at the time origin i.e.

L{D{f(1)} = s"L{f(1)} (5.5)

Consequently, the Laplace transforms for various functions and their inverses can be
derived. It is worth mentioning that the Caputo’s definition of fractional derivative

given by:

b o)y
DEF(t) = >/0( ARG (5.6)

I'n—« t — 7)antl
forn —1 < a < n,n € Z, where derivative and integration are reversed, allows
to use integer order initial conditions when applying Laplace transform and solving

fractional order differential equations.

5.1.2 Fractional Order System

A FO differential equation with commensurate orders can be described by:

S aDp () = D b i () (57)

The corresponding transfer function can be written as:

CY(s) o bms™
G = 1) = ST (5.8)

with its state-space realization given by:

Dix(t) = Ax(t) + Bu(t), 0 <a <1

y(t) = Ca(t) + Du(t) (5.9)

where z(t) € RY u(t) € R,y(t) € R, are respectively the state, input, and output

and A € RVN B e RV O € RN, D € R, the state-space parameters matrices.

Definition 1. The Mittag-Leffier function is defined by:

Eas(2) = ; —F(a; ey (5.10)

where «, 5 are complex parameters with Re(a), Re(B) > 0.
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The Mittag-Leffler function is a generalization of the exponential function:

EH(Z) = 62

Theorem 1. The solution of (5.9) is given by:

2(t) = Bo(£)2(0) + /0 B(t — ) Bu(r)dr, (5.11)

where
Bo(t) = % % — B (At°) (5.12)
°) =3 % el (A7) (5.13)

It is interesting to see that, when a = 1, the solutions above reduce to the well-

known: ®y(t) = ®(t) = Ey1(At) = e?*. The proof is constructive.
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5.1.3 Stability Analysis
The state equation corresponding to (5.9) in Laplace domain can be written as:

s*X(s) = AX(s) + BU(s)

Y(s) =CX(s)+ DU(s) (5.14)

Where: s is the Laplace complex frequency, o the FO (o € R*), U, X, Y respectively
input, state, output, and A, B, C, D the state-space parameters matrices.

The characteristic polynomial of (5.14) is given by:
w(s) = det(s“] — A) = a,s™ + 415"V 4. 4 qq (5.15)
with its associated natural degree polynomial written as:
W(N) = ap A" + A A"V £ g, A =52 (5.16)

Theorem 2. The FO system (5.9) is stable iff the fractional degree characteristic
polynomial (5.15) has no zeros in the closed right half of the Riemann complex surface,
1.e.

w(s) = det(s*I — A) # 0, Re(s) >0 (5.17)

or equivalently, the following condition is satisfied
m .
largXi(A)] >ag, 1= 1,2,...n (5.18)
where \;(A) is the i'" eigenvalue of matriz A.

Remark: it can be shown [36] that the fractional system with the characteristic
polynomial (5.15) is unstable for all @ > 2. Therefore, the stability of fractional
system in this paper is considered for o € [0,2]. Furthermore, the stability analysis
should be divided in two different interval 0 < a« <1 and 1 < o < 2 as it can be seen

in the following analysis.
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First, one can immediately specify that the FO system (5.14) is stable if and only if
the eigenvalues of the matrix A lie in the specified regions according to the intervals

0<a<landl<a<2asshown in fig. 5.1 and fig. 5.2.

Figure 5.1: Stability region for 0 < a <1

With the aid of [36] and [37], the following theorems can be written with respect

to the state-space representation of fractional systems.

Theorem 3. The fractional system (5.14) with 1 < a < 2 is stable if and only if one

of the following equivalent conditions is satisfied:

1. The eigenvalues of the matrix

i Asin(an/2)  Acos(am/2)
—Acos(an/2) Asin(an/2)

have negative real parts.
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2. There exist positive definite Hermitian matrices P > 0 and Q) > 0 such that
2PA+ 2*ATP = —Q

where z = v + jJw

with tan(m — an/2) = v/w

3. There exists a matriz P = PT > 0 such that the LMI

(AP + PAT)sin(ar/2) (AP — PAT)cos(am/2) 0
(PAT — AP)cos(ar/2) (AP + PAT)sin(am/2)

18 feasible.

Theorem 4. The fractional system (5.14) with 0 < « < 1 is unstable and all eigen-
values of A lie in the instability region shown in fig. 5.1 if and only if the eigenvalues

of A have negative real parts, where

e —Asin(ar/2)  Acos(an/2)
—Acos(ar/2) —Asin(an/2)

or (5.14) is stable if and only if there does not exist any non-negative rank one complex
matriz ) such that

rAQ + QATF >0

where r = sin(am/2) + jcos(an/2) and T denotes the complex conjugate of r.

Corollary 1. The fractional system (5.14) with 0 < « < 1 is stable if there exist

positive definite matrices X1 = X{ and Xy = X3 such that
X1 AT+ rAXy 4+ r X, AT +1AX, <0

where r = exp(j(l — a)m/2).
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The stability analysis provides us guidelines for the choice of the fractional order
of the model to identify. Considering the fact that a loudspeaker is a stable system,
the choice of & = 1/2 seems reasonable. Another important point is that this analysis
provides also guidelines to eventually stabilize the identified model. In fact, due to
measurement noise and nonlinear distortion, frequency identification algorithms can
deliver a model which is not stable [38]. Different methods exist for stabilization, in-
cluding stability constraints added to the algorithm [25], added delay applied to the
measured data [39], pruning and mirroring of the unstable poles [40], and separation
of stable part through decomposition method (see chapter 6). The specific nature of

fractional order system has to be taken into account when applying these methods.

Let us assume that the outcome of the subspace identification method leads to
the realization {A, B, C, D} with unstable and stable eigenvalues associated with
the matrix A. As pointed out above, several algorithms exist for extracting stable
identified model. A simple method is separation of stable and unstable part of the
system by using spectral projection for block diagonalization. Sign function based
spectral projection method, for example, is computationally efficient to perform this
task. So one can eventually use the orthogonal transformation matrix to transform

{A, B, C, D} to {A, B, C, D} such that
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which yields the desired additive decomposition
G(s)=C(sI —A)'B+ D =C(sI — A)B + D = Gy(s) + Ga(s)
where the stable and unstable part are, respectively,

Gl(S) = Cl(SIk — All)_lBl + D

Ga(s) = Co(sly—t, — Ap) 'Ba+ D

Consequently, extracting the stable part and ignoring the unstable part of this decom-
position leads to stable approximation which is the optimal L, norm approximant.

A second option is replacing the unstable matrix Ay, with A5, in the z-domain. The
equivalent in the s-domain is flipping all the unstable poles around the imaginary

axis. The position of zeros remain the same.

5.1.4 Illustrative Example

As an illustrative example we will examine hereafter the response of a simple frac-

tional order circuit, as shown in fig. 5.3, where F' = 1/cs« When o = 1, F is an

R
o—AN\—e—o0

O ® O

Figure 5.3: Fractional order circuit

ordinary capacitance and we have a classical RC circuit. When « # 1, F is called a
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fractance or constant phase device.

Frequency Response

In the Laplace domain, we have straightforwardly:

Y(s) 1
H,(s) = = 5.19
(s) U(s) 14 RCs” (5.19)
And then the frequency response:
H, () : (5.20)
(jw) = ——rr—— .
J 1+ RC(jw)~

For a = 1, we have the familiar first order low-pass filter:

1

) =1 e

with the cut-off frequency wy = 1/rc, and an asymptotic attenuation rate of -20
dB/decade for frequencies beyond.

In the general case (o # 1) the cut-off frequency can be defined similarly as wy =
(RC)~'/* and the asymptotic attenuation rate is —20a dB/decade. E.g. o = 1/2 —
wo = !/VRC and the attenuation rate becomes -10 dB/decade. In fig. 5.4 we show
the Bode plots of the capacitance and fractance circuits where the capacitance value

C and fractance value C’ are scaled in such a way that the two cut-off frequencies
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Figure 5.4: FO circuit Bode plots
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coincide: RC' = v RC" = Y/2000. At the cut-off frequency we have:

1
V2 + cosarm
=1/V2=-3dB, fora =1
1
=———=-54dB, fora=1/2

NCERY:

Arg(H(jwo) = Arg(5™") = —am/2

|H (jwo)| =

=-—n/2, fora=1

= —7n/4, for a =1/2

Time Domain Response

The corresponding differential equation for the above circuit is:
y(t) + RCDy(t) = u(t)

and corresponding state-space representation:

Dz = Ax + Bu

y="Cx

with: A=—-1/RC =—-B,C =1.

Assuming a relaxed system, £(0) = 0 and using Theorem 1, we have:

y(t) = % /O B(t — 7)u(r)dr

where
tOt
O(t) =t 1B 0 (———
(t (- =)
Therefore the impulse response of the circuit is:
tozfl ta
ho(t) & == Epo(———=
(t) = 55 Baal-57)

71

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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For a = 1 (capacitance):
hy(t) = ——=e V/EC (5.27)

For a = 1/2 (fractance):

1 Vi
ROVt (_E)

It is important to see that for a < 1 : limg+ hy(t) = 4+00.

(5.28)

N|=

1
27

D=

That difficulty lets us consider the step response. In the Laplace domain, the step

response is:
1 1
A

G =S T Row (5:29)

In the litterature [41], it can be found that the step response in the time domain is

given by:
ta
L7} =1~ Farl- ) 2 ga(0) (5.30)
For a =1 (capacitance):
gi(t) = (1 — e /HO) (5.31)

For a = 1/2 (fractance):

0 () =1 - By (— )

(5.32)
Using the same relative scaling of capacitance and fractance values as before, we get
the following step responses (see fig. 5.5). It is interesting to see that the initial slope

is steeper for av = 1/a.

5.2 Loudspeaker FO Model

We have now the tools to elaborate a simple fractional order model of loudspeaker.
Substituting a fractional inductance into the loudspeaker model differential equations

(2.1) and (2.2), we get:

d%q dzx
t) = Ri(t) + L— + Bl— 5.33
u(t) = Ri(t) + Lo + Bi (533)
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FO circuit Step Response
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Figure 5.5: FO circuit step responses
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, d*r  dx
In the complex frequency domain:
U(s) = RI(s) + Ls*I(s)+ BlsX(s) (5.35)
BlI(s) = ms*X(s) +rsX(s) + kX(s) (5.36)
Algebraic manipulations leads to:
U(s) Bl?s
Z = = L a _— .
(s) T0s) R+ Ls +m82+m+k (5.37)
I 2
Y (s) = (s) ms® +rs+k (5.38)

U(s) ~ Lmsta + Rms? + Lrs't + (Rr + Bl?)s + Lks* + kR
Using the following parameters values (similar to the ones used in chapter 2, we obtain

convincing impedance characteristics (fig. 5.6 and fig. 5.7):

o m=1435¢

r= 0.786 kg/s

k= 1852 N/m

Bl= 4.95 N/A

L= 0.1197 uH

R= 3.3 Ohms

e o= 0.5

To translate the FO differential equations (5.33) and (5.34) to a state-space real-

ization (5.9), we can, in the case of o = 0.5 rewrite them as:

k r Bl .

D?x(t) = T EDtlx(t) + Ez(t)
Bl R 1

D}%i(t) = ——Dja(t) = Fi(t) + 7u



CHAPTER 5. FRACTIONAL ORDER MODEL

log[Ohms]

Loudspeaker Impedance Magnitude— FO model a. = 0.5

Mag. i
— — -Vwtrend

Figure 5.6: Impedance magnitude of FO loudspeaker model (a=0.5)
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Then using the property Df*? = D@DP [34,35], and defining the state vector as:
[Ch €2a €3a C47 C5]T = [:Ev Dt1/2xa D2$7 D?/Qxa Z}T

we obtain:

DG =G

DG =G

D¢ = G4

D¢ = —ﬁﬁl G+ El@
m m m

Dtl/QCs = —%@ - %(5 + %U

which can be written in state-space notation as follows:

01 0 0 0 0

0 0 1 0 0 0
D/?¢=]10 0 0 1 0 |¢+]|0|u2AC+Bu (5.39)

—_k 9 —~ o B 0

l 1

0o 0 -% o & 7

Another realization is possible using:

¢ =1[¢1, .G & [z, Dia,i]”

and:

Di¢i = ¢
,

k Bl
DiGo=——C——G+—C(

m m m

R 1

N BI
Dy = —f@ - ZC?’ + 7Y
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which can be written in state-space notation as follows:

0 1 0 0
D/¢ = —E 2 BLAC+ 10 u 2 AC+ Bu (5.40)
Bl R
0 -7 -1 T

with the following definition: D] = diag{D}, D}, D%}.

The system:

Dy ((t) = AC(t) + Bu(t)

y(t) = CC(t)
has the following transfer function:
G(s) = C(diag{S, S,S*} — A)'B

This state-space realization is much simpler: the state-vector dimension is three in-
stead of five. It is not using commensurate differentiation orders and therefore allows
more freedom in the choice of a. Beyond this simple case, it is worth mentioning that

obtaining minimum realization of FO system is the subject of on-going research [42].

5.2.1 Loudspeaker Impedance

As we have seen the loudspeaker can be studied in two parts: the electromechanical
part (motor) and the acoustical part (diaphragm). The motor is responsible for the
low frequencies behavior and most of the nonlinearities while the diaphragm produces
high frequencies irregularities due to modal vibrations. Equations shows that the
motor dynamics is fully observable through its electrical response i.e. its impedance
curve. In this chapter we will therefore focus on the modeling and identification of

the impedance (see fig. 5.8).
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Loudspeaker Impedance Magnitude
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Figure 5.8: Example of loudspeaker measured

impedance.
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5.2.2 Empirical Evidence of Fractional Order

From to (2.1) and (2.2), the electrical impedance can be expressed as:

mLs* + (rL+ Rm)s®* + (rR+ BI* + kL)s + kR
Z(s) = ms? +rs+k (5.41)

That simplified model is used widely, however many studies have shown its insuf-
ficiencies. In particular it doesn’t capture the influence of eddy currents in the iron
pole structure [43] or the visco-elastic behavior of the suspension (‘creep’) [44] nor
the thermal dependance [45]. Various improved models with added complexity have
been proposed [46-48] but there is no general agreement about any of them.

The impedance curves shows three important features, consistent with (5.41):

e The impedance tends toward a non-zero value at low frequencies, i.e. the voice-

coil has a DC resistance.

e A strong mode stands out. This is due to the mechanical resonance of the
moving part attached to the voice-coil combined with the spider and surround

springs.

e At high frequencies there is a continuous rise of the impedance magnitude,

which is consistent with an inductive behavior of the voice-coil.

Looking more closely, one can notice something unusual: the phase at high frequency
doesn’t tend towards 90 degrees as one would expect from an inductance. A linear
regression on the log-magnitude of the impedance versus log-frequency, in the high
frequencies range shows that the magnitude rises with the square-root of the frequency
(see fig. 5.9).

This fact is well-known in the electroacoustic community and has been described

in the aforementioned papers [43,46-48]. The semi-inductive behavior is attributed
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Loudspeaker Impedance Magnitude- Log-Log Trend
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Figure 5.9: Loudspeaker semi-inductive behaviour (log-log scale).
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to eddy currents in the iron pole structure of the motor and lossy coils have been
successfully modeled using fractional derivative [49]. This fact made us believe that
the loudspeaker motor is indeed a fractional order system and should be identified
as such. Thus, we believe that the application of FO System Identification on loud-
speaker is one of the most comprehensive method to overcome the difficulties of

previous approaches.

5.3 Identification Method

Frequency domain subspace Identification has proven to be an efficient and flexible
method for linear system identification (see section 4.2.3). In this section that method
is extended with minor modifications to the parametric estimation of FO system. The

modifications are:
e the frequencies used have now fractional exponent: z, = (jwy)*
e a frequency normalization is applied at the beginning and undone at the end
e the matrix whitening prior SVD (step 3c of the algorithm) is no more used

Frequency Normalization The frequency powers that appear in the calculation can
yield large numbers and ill-conditioned matrices. Frequency normalization mitigates
that issue and improves numerical stability [27]. Frequency scaling is therefore applied

at the beginning of the algorithm and undone at the end.

5.4 Experimental Results

The identification algorithm has been applied on the measured impedance curve
(fig. 5.8) with respectively: a = 1,2, = jwp and a = /2,2, = /jwi and for a

range of system orders n, = 1,2...,30. The resulting relative rms error €¢[dB]| =
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20l0g(||G — G||/||G|]), has been recorded for each and the results are displayed in
fig. 5.10. We see that the half differential order yields lower error than the integer
order and that the minimum is reached for a lower system order: 8 instead of 30.
We observe also that the range of errors is greater for half differentiation order. The
modeled impedance curves are displayed for the best case of integer differentiation
order and half order along with the the measured impedance in fig. 5.11 and fig. 5.12
respectively. The curves are graphed in magnitude along with the magnitude of the
complex error curve |G — G|. The overall error obtained in case of integer order is
-17dB and -24dB for half-order. It is interesting to see in the case of integer frequency
order that the error is mainly concentrated in the low frequencies and that the high
frequencies show signs of over-fitting. In he case of half-order the error curve is much
flatter and the low frequencies show a better fit. There is little sign of over-fitting,
the system order seems appropriate. A fine tuning with a nonlinear optimization

procedure like Levenberg-Marquardt would likely reduce the error further.

5.5 Discussion

The subspace algorithm presented could be improved. Output noise reduction could
be put in place as described in [25,27]. The observed output noise covariance ma-
trix is used to reduce the noise influence prior SVD in the step 3c of the algorithm
(see [27] for details). That method yields good results for integer differential order
but is problematic for fractional order. The noise reduction method needs to adapted
in that case.

Fractional differential order opens new degrees of freedom with the choice of differen-
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Best fit with integer order subspace ID- SS Order: 30— ID Error= -17dB
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Figure 5.11: Estimation based on integer order dynamics.
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Best fit with sqrt order subspace ID- SS Order: 8- ID Error= -24.1dB
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tial order step, commensurate vs. non commensurate orders, continuous vs. discrete
order distribution [50]. Recent study [51] shows that different orders and parame-
ters combinations can result in very close transfer functions and the ambiguity grows
rapidly with decreasing order values. For example, use of & = 0.1 and a system order
of 6 result in -30 dB error on the impedance fit. That ambiguity makes the black
model approach impossible. On the other hand, the white model approach necessi-
tate a complete understanding of the physical phenomenon and is unrealistic as we
have seen. Therefore a grey model approach is the only practical one. The choice
of grey model should be guided by the question: what are the useful parameters to
identify? In our present case, the identification of the mode (resonance frequency,
damping) and the DC resistance have physical pertinence and design consequences.
On the other end, fractional order is necessary to model the behavior at frequencies
above resonance. That suggest the use of a mixed model combining integer and frac-
tional orders. Finally, the nonlinearities inherent to the operation of loudspeaker are
not covered by a fractional order system which is inherently linear. The polynomial
approach described in [20] could be used similarly with state-variables of fractional

order.

5.6 Conclusion

In this chapter we have presented a novel fractional order approach to loudspeaker
identification. First we have shown that the electrical impedance of a loudspeaker
exhibits FO behavior. Then a summary of the theory of fractional calculus has been
exposed. An illustrative example of a simple FO low-pass filter has been analyzed.
A FO model for the loudspeaker has been naturally derived from the classical model.
A frequency domain subspace identification method adapted to FO state-space has

been described. Experimental results of real data have been presented and have
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demonstrated that the FO order approach results in a better modeling of the data
with a lower fitting error and a smaller model order than the traditional integer order
approach. In a brief discussion we have indicated several directions for further research
and improvements. Altogether we consider that the FO approach gives convincing

results when applied to loudspeaker modeling and identification.
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Chapter 6

Model Reduction and Stabilization

6.1 Model Reduction

6.1.1 Introduction

Noise and nonlinearities introduces superfluous and/or unstable pole/zeros (see sec-
tion 4.4.2). There are two separate issues: poles/zeros that contribute only into
minute details for the FRF, what we can consider being in excess, and unstable poles
(and non-minimum phase zeros). Both issues are addressed by editing the pole-zero
distribution of the model. In this section we focus on pruning. The mirroring will be

described in section 6.2.

6.1.2 Distant Poles/Zeros

As shown below, pole-zero pairs contribute only to small changes in the FRF gain
when they are far from the frequency locus in the complex plane (jw axis or e* circle).
The same can be said of poles and zeros which are close to each other. Removing
the excess of poles/zeros results in a model order reduction which is desirable for NL

identification (as seen in section 4.4.2). In the following we show how each poles and
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zeros affects the FRF. The discussion is done for the discrete case but it can be easily
extended to the continuous case. Let’s consider a rational transfer function G(z) with

K zeros and L poles and express its gain in dB:

G(Z) - q Hszl(Z — Zk)

’ Hlel(Z —p)

K L
20log |G(2)| = 20log |Go| + 201ogH |z — zx| — 2010gH |z — pil
k=1 =1

K L
:2Olog\G0\+20210g]2—zk|—20210g]z—p1| (6.1)

k=1 =1

The gain at frequency w is 20log |G(e’“)|. Each zero z brings an maximum atten-
uation for w = Zz; equal to 20log|e/“** — z| = 20log|1 — |2;|| and a minimum
attenuation for w = Zz;, + m equal to 20log| — /4% — z;| = 20log |1 + |2;||. For
the poles the situation is reversed: each pole p; brings an maximum amplification for
w = Zp; equal to —201log |1 — |p;|| and a minimum amplification for w = Zp; 4+ 7 equal
to —201og |1 + |p||. The situation is illustrated in the following figure (fig. 6.1).

A
J o Zk

) ’Attenuation

Amplification

Amplificatio

Figure 6.1: Influence of pole and zero positions on FRF gain.
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The total peak-to-peak ripple effect on the FRF magnitude is then given by:

Max. gai
Ripple [dB] = 20 log ~— 831
Min. gain

1
= 20log M, for a zero

= 201log |+—l, for a pole (6.2)
We see in fig. 6.2 that poles and zeros far away from the unit circle have little in-

fluence on the FRF magnitude. E.g. a pole (zero) of magnitude % or magnitude 3

induces a ripple of 6 dB.

FRF gain ripple vs pole (zero) magnitude
T T

Figure 6.2: Total ripple effect of a pole (zero) on FRF gain as a function of
its distance to the unit circle.

In the phase domain:

LG(2) = LGo+ Y Llz—2) =Y L(z—p) (6.3)

k=1 =1

Each zero adds a contribution to the total phase response and the range of this
contribution is relatively invariant with the zero location (see fig. 6.3). Each pole

subtracts a contribution in the same way. Suppressing a pole or zero will have about
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the same effect on the FRF phase regardless of its distance to the unit circle. If the
phase is of importance, caution must be exerted and the overall response must be

verified case by case.

Figure 6.3: Contribution of a zero of given argument on FRF phase as a
function of its distance to the unit circle.

6.1.3 Poles-Zeros Pairs

The reasoning can be extended to a pair of pole-zero close to each other. From (6.1)

we see that the gain contribution of that pair is:

Jjw __ _
C Ty DT (w) (6.4)
el —py el —
with:
A Pt — Rk
£ 2 F 6.5
e(w) pre— (6.5)
We have

[ =i > 1= [p]] (6.6)
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Using this last equation, we obtain an upper bound for €(w)

b1 — 2 Pr— 2k | a
e(w)] = |= < = €4 6.7
) = | B < (B 2, (67)
Assuming that €g,, < 1 we have
1 —€oup < 1= [e(w)|] S [T+ ew)] < |1+ [e(w)[] <1+ €sup (6.8)

That gives us an upper bound of the gain ripple:
Ripple [dB] = 201log ———= (6.9)

E.g. for a pair of pole-zero with p; = 0.8, 2, = 0.8—0.01, we have €4,, = 10_'—(& = 0.05

and a maximum ripple of about 0.87 dB. This situation is illustrated by fig. 6.4.

A

j

~ Amplification

Attenuatio

Figure 6.4: Effect of a pole-zero pair on FRF gain.

The influence of the phase can be be estimated too. A quick geometric reasoning

let us to:

Z(1+€e(w)) < tanHegp) R €y T 65| < 1 (6.10)
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bi—zk

Thus we conclude that we can use the criteria =T

< 1 to eliminate some pole-zero

pairs.

6.1.4 Balanced Model Reduction

An alternative and simple model reduction method base on balanced realization will

be introduced in the following paragraphs.

A. Balanced Realization

Suppose that a minimal and stable state-space representation of a discrete time sys-
tem is given by {A, B,C,D}. Let the controllability and observability Gramians

associated with this system be written as

W.=>_ A*BBT(A")* (6.11)
k=0

W, =Y (AFcTcak (6.12)
k=0

It is not difficult to show that W, and W, satisfy the discrete Lyapunov equations

AW AT — W, = —-BB" (6.13)

ATW,A-W, = -CTC (6.14)

A minimal state-space representation is called balanced if the controllability and

observability Gramians are equal and diagonal i.e. if
W, =W, = diag{o1,09,...0,}, (6.15)

with 0; > 0;11,7 € [1,n — 1. Let T be a transformation matrix (yet to be deter-
mined) such that {A = T-'AT,B = T~'B,C' = CT, D = D} is internally balanced.
The following algorithm adopted from [52] is a possible way to obtain the required

transformation.
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Algorithm

1. Compute the Cholesky factors of the Gramians. Let L. and L, denote the lower

triangular Cholesky factors of W, and W, that is,

W.=L.L

W,=%L,LE (6.16)

2. Compute the singular value decomposition of the product of the Cholesky fac-
tors; that is,

L', =vyu* (6.17)
3. Form the balancing transformation
T=LUxX? (6.18)

It is noted that

Tt =xPVT LT (6.19)

4. Form the balanced state-space matrices

A

A=TAT =2""2VT T AL UX/?

B=T"'B=x""2VvT[TB (6.20)

C=CT=CLUX? (6.21)
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B. Model Reduction using Balanced Realization

There are three methods for model reduction based on balanced realization applicable

for continuous an discrete systems.

Method 1: (Direct Truncation)
Consider the internally balanced realization of a system partitioned based on large

and small singular values

I‘l(k —+ 1) _ AH A12 xl(k) n Bl
l’g(k’ + ].) A21 A22 l’g(k’) B2
xl(k)
y(k) = ¢ G (6.22)
(e )|

Remove from the system matrices the blocks corresponding to the smaller singular
values and specify the reduced order model by the triple {A;;, By,C;}. Note that,
if direct term from a proper realization exists, then it remains in the reduced-order
model.

Method 2: (Singular Perturbation Balanced Truncation)

Partition the system as in Method 1 and use the following reduced-order model

z(k+1) = Az(k) + Bu

y(k) = Cx(k) (6.23)

where /_1 = AH - A12A2_21A21, B = Bl - A12A2_21A21 and O = Ol - 02A2_21A21. The

reduced-order system {A, B, C'} is also internally balanced.
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6.2 Model Stabilization

6.2.1 Introduction

Frequency domain identification algorithms do not guarantee a stable model. Even if
the measured system is stable, which is the case with loudspeakers, output noise and
nonlinearities can lead the identification process to output an unstable model. The
issue is well known [38]. Model stability is desirable in general and is necessary in our
case because our final nonlinear identification is done by minimization of the output

error in the time domain .

6.2.2 Short Review of Existing Approaches

To stabilize the model obtained with subspace identification they are different ap-

proaches:

e impose stability constraints during the identification process. In [25], the unsta-
ble eigenvalues of the discrete model are projected inside the unit circle. Other

methods involves a iterative constrained optimization [53].
e add a delay to the measured FRF [39].

e prune the unstable poles or mirror them [40].

6.2.3 Mirroring

Poles pruning was described in section 6.1. This section describes a classical technique
used to fix unstable poles in a transfer function. The discussion is done for the discrete
case but it can be easily extended to the continuous case. The principle is to replace
each outstanding pole by its inverse conjugate which has an inverse magnitude but

the same angle:
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. 1 1 .
po = Ipolei e £ = Lo (6:24)

*

Po N |p0|

The unstable pole is mirrored with respect to the unit circle (see fig. 6.5).
A
J

Figure 6.5: Pole mirroring.

That transformation des not change the magnitude of the FRF (up to a constant

gain). Lets consider for example, the unstable filter:

H(z) = with [po| > 1 (6.25)

1 —poz—t’

After mirroring the unstable pole, we obtain a stable FRF:

~ 1

H(z) (6.26)

On the unit circle, the gain of the stabilized FRF is proportional to the gain of the

original one:

1

‘ L—py le

[l (e')] =

poe’ ' _ ‘ Po

| = [ = e 62
0
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It is worth noting that pole mirroring affects the phase response. The relationship
between original and stabilized FRF is:

1 — poe™ ¥

fl(ejw) = H () —

(6.28)

e—iw

and the second term is an all-pass filter that introduces a phase distortion.

6.2.4 Delay

In this section we will show how adding a delay to the target FRF can be used to sta-
bilize the identified model. First it is worth mentioning that, due to instrumentation
and measurement limitations, the delay between the voltage and current measured
may be off by a few samples. That introduces a slope error on the phase. In high
frequencies the impedance should behave as an inductance with constant phase. The
measured impedance shows a linear phase due to a added delay (see fig. 6.6). A

least-square estimation of the phase slope gives a delay error of about 0.6427 sample.

Impedance phase

25 T

phase[deg.]

I |
2000 4000 6000 8000 10000 12000
[Hz]

Figure 6.6: Phase of measured impedance.

The subspace identification performed on this data results in a unstable model as

shown by the pole-zero map (see fig. 6.7).
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Pole-Zero Map
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Figure 6.7: Pole-Zero map of identified model for measured impedance with

uncompensated delay. x: poles, o: zeros. Integer order dynamics. Best
fit.
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When the delay is compensated by G4(f) = G(f) exp(j2r f7), where Gy, G, f, T are
respectively the delayed FRF, the measured FRF, the frequency values, the correction
delay, and the identification is performed on the delayed FRF, the identified model
is then stable as shown by the pole-zero map (see fig. 6.8).

This demonstrates the important impact that the delay has on the stability of the

Pole-Zero Map
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-1 -0.5 OReal Axis (seconds'1) 0.5 1 15-5
x 10

Figure 6.8: Pole-Zero map of identified model for measured impedance with
compensated delay. x: poles, o: zeros. Integer order dynamics. Best fit.

identified model. In fact, varying incrementally the correction delay results in vastly
different results in terms of stability, model order and goodness of fit. This have been
observed in [39]. In that paper a two tier optimization method is proposed. First, for
a given model, the algorithm finds the delay value that achieves the best fitting error

while preserving stability. Second, for a given delay value, the parameters of the model
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are optimized to minimize the fitting error. That approach provides an automatic
delay selection, but involves solving a set of ODE for the parameters optimization and
a gradient search for the delay. That rather involved method has not been developed

in this study.

6.2.5 Additive Decomposition

As pointed out before, the resulting subspace identification method leads to an un-
stable system in spite of the fact that the original system is stable. Model reduction
for unstable systems can be performed in several ways as are described in the above
subsections. In general the idea is based on the fact that unstable poles are usually
important for the dynamics of the system, hence they should be preserved. This can

be achieved via an additive decomposition of the transfer function as
G(s) = G_(s) + G4(s) (6.29)

with G_(s) stable, G (s) unstable, applying balanced truncation to G_ to obtain G'_

and setting

~ ~

G(s) = G_(s) + G4(s) (6.30)

thereby preserving the unstable part of the system. Such a procedure can be imple-

mented using the spectral projection methods for block-diagonalization which leads

to
dzgap= [0
0 Azz
> AN A Bl ~ A A ~ A
B2U'B4& ,C:CU:(C1 02),17:0 (6.31)
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This yields the desired additive decomposition as follows:
G(s)=C(sI —A)'B+D=C(sI — A)*B+ D

(sl — App) ! B,
=\ O 0y + D (6.32)
(sly—i — A22)_1 By

= {C’l(s[k - Au)ilBl + D} + {CQ(SIn_k - Agg)ilBg}

£ G_(s) + Gi(s)

Then apply the procedure of Section 6.1.4 to G_ and obtain the reduced order model
by adding the transfer functions of the stable reduced and the unstable unreduced
parts as summarized above. However, in our case, it is the opposite; namely, we
discard the unstable part of the resulting decomposition G (s) and apply balanced

model reduction on G(s) if needed.

6.2.6 Specific Issues of Fractional Systems

The transfer function is influenced by the distance of poles and zeros to the complex
frequencies axis. With continuous fractional systems, the complex locus of frequencies
lies on (jw)® instead of the usual jw (see fig. 6.9). That has to be taken in account

in pruning and mirroring actions.

K o
Gs) = L "~ 2 (6.33)
Hl:l 5 —pi
Solutions of s* — ¢ = 0.
Let’s have:
c2re? with: > 0,71 <0 <7 (6.34)

Solutions are the set:

s = {7"1/‘167'“«:%]”r : k integer} (6.35)



CHAPTER 6. MODEL REDUCTION AND STABILIZATION 103

A

Imag (W)

X

oTr/2 Real

(-jw)*

Figure 6.9: Frequency axis for a fractional order system of degree «

1. a = p integer. The set of solutions contains p distinct values evenly distributed

on circle of radius /7 (which is a well-known result):

- 0+2kT

s={rt'Pe " k=0,...p-1} (6.36)

2. a=1/p, p integer. The solution is unique:

s = {rPedO+2mP . k integer} = rPe! = (P (6.37)

3. a = p/q, p,q non commensurate integers. The set of solutions contains p distinct

values evenly distributed on circle of radius r#/9:

s = {r1redOT2male k=0 . p-1} (6.38)

4. « irrational. The set of solutions contains an infinite (countable) number of

values evenly distributed on circle of radius r/®.
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As an illustrative example, the set of solutions of s%/% — 2 = 0 is:

s = {23/5eI%T3/5 k=0, .4}

= {1.5157, —1.2262 — 0.8909i, 0.4684 + 1.4415i,0.4684 — 1.4415i, —1.2262 + 0.8909: }



105

Chapter 7

Conclusions

The nonlinearities inherent to the operation of loudspeaker are not covered by a
fractional order system which is inherently linear. For that purpose, the polynomial
approach can be extended with state-variables of fractional order. In the following
section, we combine the advantages of both approaches, namely polynomial state
space and fractional order, to obtain a comprehensive nonlinear modeling of the

loudspeaker.

7.1 Combination of Polynomial and FO Approaches

By injecting FO derivatives of state-variables into the PNLSS model we obtain the

general FO nonlinear model

D¢ = AC + Bu+ Ep(¢*,u) (7.1)

y(t) = CC + Du+ Fq(¢t,u) (7.2)
where
e ( is the state-vector

e p and ¢ are polynomial vectors of combinations of state and input variables
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, D ()T vector of fractional derivatives
For FO derivative, we can use for example the Caputo’s definition:
1 AG)
DY f(t) = d 7.3
tf() F(n—a)/o (t—T)o‘_n+1 T ( )
withn—1l<a<nneZ

This general model can readily be applied to loudspeaker by using fractional in-
ductance model (see ch. 5)

k r Bl .
D?x(t) = = Epgx(t) + Ez(t)
o Bl R 1

combined with the PNLSS loudspeaker model described in ch. 4, as to obtain
(D{¢1, DG, DGs)" = AC+ Bu + Ep(¢T,u)

y(t) = C¢
with

¢ = (x, Djx,i)", state vector

0 1 0
Bl R
0 -7 -1

T
B = (0 0 %)
C = (0 0 1) , for current output

and where E coefficients are obtained by Taylor expansion of the electromechanical

parameters in regard to the cone excursion 2 and polynomial vector p(¢T, u) contains
monomials in ¢ and wu.
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7.2 Full Identification Procedure

We have seen in chapter 4 that, because of the additive nature of nonlinearities in
the polynomial state-space model, the overall identification procedure can proceed
in two successive parts: first the linear part then the nonlinear part. Identification

procedure summary of system described by :
1. measurement of the FRF which gives the BLA of the system (7.1):

2. subspace identification in the frequency domain that yields estimates of linear

parameters A, B,C, D

3. least-square identification in the time domain to obtain estimates of nonlinear

parameters F, F'

Frequency domain ID for FO systems is described in chapter 5. LS identification in
the time domain (as described in ch. 4) necessitates a discrete time implementation
of the FO nonlinear state-space system. Unfortunately it is not a simple task as

explained in [35,54] and we didn’t explore that avenue in this study.

7.3 Discussion and Conclusion

The goal of this thesis was to find a comprehensive nonlinear modeling of loudspeak-
ers, from voltage input to acoustic output.

In chapter 4, we have presented a technique based on polynomial state-space for non-
linear modeling of loudspeaker which can effectively be used in identification process.
It is an overall approach that encompasses the whole system in one model which ex-
plains both linear and linear characteristics. The linear part is described by a classical
state-space system and the non-linear part is described by polynomial combination

of state and input variables. The nonlinear part is additive to the linear part which
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is convenient for identification and the precision of the model is scalable by the mean
of the polynomial order. PNLSS is a powerful and general tool to model NL sys-
tems, including systems with nonlinear feedback and is well adapted to loudspeaker
description.

In chapter 5 we have found that fractional differential equations greatly improves
the linear modeling of the loudspeaker. This new approach results in a compact and
efficient fractional state-space model that fits experimental data with better accuracy
and lower system order than traditional approach. The same linear identification
algorithm used in chapter 4 can be re-used with little modification. FO approach
is novel in the domain of loudspeaker modeling. It provides a clear and powerful
mathematical theory that explains experimental data.

Finally we have shown that the two approaches can be easily combined into a model
that encompasses the nonlinearities and the FO derivatives into a fractional order
polynomial state-space system that potentially better describe the behavior of loud-
speaker. Complete identification needs time domain modeling of nonlinear FO SS
system. That should be the subject of future study.

However, we have seen that polynomial nonlinear state-space require large number of
parameters, and FO differential equations are difficult to realize in the time domain.
Research is ongoing to develop more parsimonious representation of nonlinear systems
like NL block models [55], port-hamiltonian systems [56], and to pursue time-domain
realizations of FO systems [42].

Altogether, the results obtained with this study were promising and show that our
approach is worth of further investigation. Overall, the contributions of this thesis
have been a generic and comprehensive nonlinear model of loudspeaker, the applica-
tion of FO calculus to better explain its linear characteristics and the elaboration of

associated identification methods. Finally, ecause of its polynomial nature, the pro-
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posed model opens the possibility of inversion and therefore feedforward linearization

(Canti-distortion’) of great interest for the audio industry.
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Appendix A

Codes for Best Linear

Approximation

These codes and the ones given in the subsequent appendices were written in Matlab

R2012a.

function [Gbla, VarN, Varbla]= BLA(u, y, M, P, N, w)

% Estimate the BLA of the FRF by averaging on M realizations
% of P+1 periods of random multisine uw and response y

% {in}

% u= input signal (sequencial random multisine) of length N(P+1)

% y= DUT response

% M= # of random stimulus realizations

% P=# of periods —1

% N= period length;

% w= multisine frequencies in rad/spl in |0, pi]
% {out}

% Gbla= complex FRF one—sided, estimated at freq w

% VarN= Variance due to noise
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% Varbla= Variance of Gbla (noise + stochastic nonlinearities)

k= round (w/2/pixN)+1; % frequency indices

K= length (k) ;

Grz= zeros(K.M); % M estimates of G

Var_-nG= zeros (K,M) ;

realiz_u= reshape(u, (P+1)«xNM); % M realizations of P+1 periods

realiz_y= reshape(y, (P+1)xNM); % M realizations of P+1 periods

for m= 1:M
frames_u= reshape(realiz_u (N+1l:end,m) N, P); % pick realiz m and
throw away first period
U= fft (frames_u);
avgU= mean(U,2) ;
% varU= var(U,0,2); % Variance is zero
frames_y= reshape(realiz_y (N+1l:end,m) ,N,P); % pick realiz m and
throw away first period
Y= fft (frames_y);
avgY= mean(Y,2) ;
varY= var (Y,0,2);
Grz (: ,m)= avgY(k)./avgU(k);
VarnG (: ,m)= 1/PxvarY (k)./(abs(avgU(k))."2); %noise variance on
G
end;
Gbla= mean(Grz,2) ;
VarN= 1/Msmean(Var.nG,2); % Variance due to noise
Varbla= 1/M«xvar(Grz,0,2); % overall variance of Gbla

% VarNL= abs(Varbla— VarN); % Variance due to stochastic nonlinearities—

can be locally negative!
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function [u, w|= Excitation_signal (M,P,N,Level ,option ,shape)
% Creates a train of M realizations of P+1 periods of random multisine
% {in}

% M= # of random realizations

% P=# of periods —1

% N= period length;

% Level= rms level [lin]

% option= harmonic grid (see multisine)

% shape= spectrum shape (see multisine)
% {out}

% u= excitation signal of length Nx(P+1)+«M

% w= multisine frequencies in rad/spl in |0, pif

u= zeros (Nx(P+1)«M,1) ;

if (nargin<6)

shape= ’white’;

[v, w] = multisine (N, option ,shape);
v= vxLevel;
for p= 0:P
n=((m—1)*(P+1)+p) *N;
u(n+1:nN)= v;
end ;

end
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function [u, w] = multisine (T, flavor, shape)
% Calculates multisine of length T with different flavors and
% spectrum shape

% E(u)= 0; E(uv"2)= 1;

% {input}

% T= multisine length in samples;

% flavor = "full 7 for full multisine with all freq from 2pi/T to pi

% = ’odd’ for odd harmonics of 2pi/T up to pi

% = ’oddodd’ for harmonics of rank 4k+1

% = 'R10’, ’R20’, ’'R40’, ’R80’ for 10, ...80 harmonics per
dec.

% rounded to the mearest line

% shape = ’white’ for flat spectrum (default)

% = ’pink’ for pink spectrum (—10dB/dec)

% = 'red’ for red spectrum (—20dB/dec)

% {output}
% u= multisine signal

% w= multisine freq in rad/spl in [0..pi]

flavor= lower(flavor);
if flavor (l1)="r’ % log scale
switch flavor
case ’'rl0’
M= 10;
case ’'r20’
M= 20;
case ‘140’
M= 40;
case ’'r80’°
M= 80;

end ;
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f= loglines (floor (T/2), M)

else
switch flavor
case ’'full’,
r=1;
case ’odd’
r=2;
case ’‘oddodd’
r=4;
otherwise
r=1;
end;
f= (1: r: fix(T/2)) ’;
end;

F= length(f);

if (nargin==3)
switch lower (shape)

case ’'white’

)

A= ones(F,1);

)

case ’'pink

A= 1./sqrt(f);

A= 1./1;

otherwise

A= ones(F,1);

end;
else % white (default)
A= omnes(F,1);

end;
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U= zeros(T,1);
ph= 2xpisrand(F,1);
for k= 1:F
U(f(k)+1)= A(k)xexp(1j*ph(k));

end;

u= real (ifft (U));
u= u/std(u); % normalization

w= {*2xpi/T;
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function delay = 1IOdelay(u, y, M)

% Estimate the delay between input signal u and output signal y

%{in}

% M= size of FFT used to estimate the Impulse response from x to y
% {out}

% delay= delay from u to y in samples

%

L= length(u);

window= ones (M,1) ;% rectangular window

overlap= 0;

sizefft= M;

fs= 1;

Syu= cpsd(y(1:L) ,u,window,overlap ,sizefft ,fs, twosided’);
Suu= pwelch (u,window , overlap , sizefft ,fs , "twosided’);

e= max(Suu) /1E3; % As big as possible

H= Syu./(Suute);

H(fix (M/2)+2:end)= 0; % eliminate negative freq to get analytic IR
h= ifft (H); % Impulse Response

% h= ifft(H./(abs(H)+eps)); % phat transform. Alternative.
[peak , delay]= max(abs(h)); % delay estimation

delay= delay —1;
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Appendix B

Codes for Frequency Domain

Subspace Identification

function [A_, B_, C_, D_]= mckelvey_algol (G, n)
% Estimate linear SS wusing mckelvey_algol

% G= FRF full circle (column)

% n= expected system order

% A_, B., C., D= estimated state—space matrices
h= real (ifft (G)); %impulse response

r= 2%n; q= 2%n;

H= hankel (h(2:q+1), h(q+1l:q+r));% Ignore h(0)
[U,S,V]= svd(H);

Us= U(:,1:n); %n first left singular vectors

% A_, C. estimation

J1= [eye(q-1), zeros(q—1,1)];

J2= [zeros(q—1,1), eye(q—1)];

J3= [1, zeros(1l, q—1)];

%A= pinv (J1xUs)*(J2xUs) ;

A= (J1xUs)\(J2%Us);

C= J3xUs;

% B_., D_ estimation
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M= length(G) /2;
I= eye(n); X= zeros(M+1,n+1);
for k= 0:M

X(k+1,:)= [C./(exp(Llj*pixk/M)«I-A_), 1];
end;
% Xre= [real(X); imag(X)];
% Gre= [real (G(1:M+1)); imag(G(1:M+1))];
% bd= Xre\Gre;
bd= real (X’«X)\real (X’+G(1:M+1));% cf Pintelon 2002 Appendiz B.3
B= bd(1:n); D= bd(n+1);

end
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function [SG, Cost]= mckelvey_algo2 (G, sigmaG, f, na, r, fs, option)

% Estimate linear SS using mckelvey_algo2

%

I in}
% G: FRF
% sigmaG: std—dev on G
% f: G freq values in [Hz]
% ma: model order
% r: estimation dimension > 1.5 na
% fs: sampling rate [Hz]
% option: ‘w’(default) for weighted estimation
% ‘unw’ for unweighted
%

%

% {out}
% SG: estimated SS system [A,B,C,D]
% Cost: weighted estimation cost

%

%% a) Matrices construction
f= f/fs; % convert to [cycle/Spl]
F= length(f);
Wtilde=zeros(r ,F);
Gtilde= zeros(r,F);
Cs= zeros(r,F);
for 1= 1:r
for k=1:F
Wtilde (1 ,k)= exp(2j*pixf(k)=*(1-1));
Gtilde (1,k)= Wtilde(1,k)+G(k) ;
Cs(1,k)= Wtilde (1 ,k)x*sigmaG (k) ;
end;

end;
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Wre= [real (Wtilde), imag(Wtilde)];

Gre= [real(Gtilde), imag(Gtilde)];
Z= [Wre; Gre];
CG= real (CsxCs’) ;

%% b) Elimination of input term by QR factorization
[Q.R]= ar(Z’,0);
RT= R’

R22T= RT(r+1l:end,r+1:end) ;

%% c) Noise reduction and SVD
C2— sqrtm (CQ) ;

% C2= eye(r);

[L,S,V]= svd(C2\R22T);

Or= C2«L(:,1:na);% Estimation of extended observability matric

%% d) Estimation of A and C
A= Or(1l:r—1,:)\Or(2:r,:) ;
C=0r(1,:);

%% e) Estimation of B and D

% Frequency variables
z= exp(2jxpixf);
H= zeros(F,na+1);
Ina= eye(na);
for k=1:F
H(k,:)= [C/(z(k)*Ina — A) ,1];
end;

)

% Weight matriz
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if nargin— 7 && strcmpi(option, ’'unw’)
W= eye(F);

else
W= diag(sigmaG." (—2));

end

% Input matrices estimation

BD= pinv(real (H «W«H) )«real (H' «WxG); % cf Pintelon 2002 Appendiz B.3
% pinv to avoid conditionning issue

B=BD(1:na);

D= BD(na+1);

%% Owutput
SG= ss(A,B,C,D,1/fs); % discrete model with sampling rate fs

Cost=norm (W«G-WxH«BD) /sqrt (length (G)); % weighted rms error
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function [SG, Cost, G_]= SubSpace_CT_simple(G, stdG, xi, na)

% FEstimate linear SS wusing Subspace algo for continuous time system
% without data orthogonalization nor noise reduction.

% Pintelon & Schoukens— System ID freq domain— Wiley 2012

%

% {in}

% G: FRF (vector)

% stdG: std—dev on G (vector)

% xzi: complex freq wvalues in [rad/s]
% na: model order

% {out}

% SG: estimated SS system [A,B,C,D]
% Cost: weighted estimation cost [dB]
% G_: estimated output spectrum

%

r= 2xna; % estimation dimension > 1.5 na

%% Frequency scaling
F= length(xi);
wscale= max(abs(xi))/2;
xi= xi/wscale; % Frequency scaling for numerical stability
%% a) Matrices construction
Wtilde=zeros(r ,F);
Gtilde= zeros(r,F);
Cs= zeros(r,F);
for 1= 1:r
for k=1:F
Wtilde (1 ,k)= xi(k)"(1-1);
Gtilde (1 ,k)= Wtilde (1 ,k)*G(k);
Cs(1l,k)= Wtilde (1l ,k)xstdG (k) ;
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end;
end;
Wre= [real (Wtilde), imag(Wtilde)];
Gre= [real(Gtilde), imag(Gtilde)];
Z= [Wre; Gre];

% CG= real (CsxCs’) ;

%% b) Elimination of input term by QR factorization
[ R]= ar(Z’,0);
RT= R’

R22T= RT(r+1l:end,r+1:end) ;

%% c) Noise reduction and SVD

% C2= sqrtm (CG);

% C2= eye(r);

% [Lsv,Sv, Rsv]= svd(pinv(C2)*R22T) ;

% Or= C2xLsv(:,1:na);% FEstimation of extended observability matriz

[Lsv,”,”]= svd(R22T);

Or= Lsv(:,1:na);% Estimation of extended observability matric

%% d) Estimation of A and C
A= Or(1l:r—1,:)\Or(2:r,:);
C=0r(1,:);

%% e) Estimation of B and D

% Frequency wvariables
H= zeros(F,na+1);
Ina= eye(na);
for k=1:F
H(k,:)= [C/(xi(k)xIna — A) ,1];

end;
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% Weight matriz

W= diag (1./stdG);

% Input matrices estimation

BD= pinv(real (H «Wx«H) )«xreal (H' «WxG); % cf Pintelon 2002 Appendiz B.3
% % pinv to avoid conditionning issue

B=BD(1:na);

D= BD(na+1);

% B= zeros(a,1); D=0;

%% Output

A= Axwscale; C= Cxwscale; % Frequency denormalization

SG= ss(A,B,C,D); % continuous model

G = H«BD; % FEstimated FRF

Cost=db (norm (WxG-WxG_) /norm(WxG) ) ; % weighted relative error in dB
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Appendix C

Codes for Nonlinear Optimization

function [E,F,r,loops]= LM_algo(lspkd ,u,y,order, Np, option)

% Levenberg—Marquardt Algorithm on PNLSS model:
% monlinear least—square optimization of polynomial coeff (PNLSS model)

% that explains best the given input—output pair u,y.

%

% {input}

% lspkd: digital time ss linear model {A, B, C, D}

% w: input signal vector

% y: measured output signal of unknown PLNSS model. Target to
approach .

% order: polynomial order

% Np: size of momnomial vector

% option: to include or not input w in monomials (see PNLSS)

% {output}

% E: polynomial coeff for PNLSS state equation
% F: polynomial coeff for PNLSS output equation
% r: residual

% loops: #loops run
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%

%% initial parameters

Na= length(lspkd.a);
theta= zeros ((Na+1)«Np,1);
7

theta contains all columns of E and F stacked on top of each other—
ZERO to start.

%}

lambda= 10; % Initial damping— high wvalue favors steepest descent
alpha= 10; % Growth factor

epsilon= le—3«norm(y);% Final error threshold— TBD

imax= 10; %IBD

i=1; % run indezx

%% calculate initial residual r(theta), cost f= ||r]||

[f,r]= cost(y, lspkd, theta ,Na,Np,u,order option);

%% calculate Jacobian J, and first candidate set of parameters theta_
J= jacobianPNLSSvsEF (1spkd , theta ,order ,u, Np,option);

G= J’'xr; % Gradient

H= J’xJ ;% Hessian

Hld= Htlambdaxdiag(diag(H)) ;

theta.= theta — pinv(HId)«G; % parameters update;

%% calculate new residual r_, new cost function f_;
[f_,r_]= cost(y, lspkd, theta_ ,Na,Np,u,order,option);
fprintf('run_%3.0f; _cost _.%3.2f_.dB\n’,i, db(f_./norm(y)));

%% iterative search of best parameters vector theta

%
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while ( isnan(f_)||(f. > epsilon)) && (i < imax)% & (max(G)>epsilon_2)
if (isnan(f_)||(f. >= f))
lambda = lambdaxalpha;% increase (lambda);

% do mothing; new parameters are rejected;

else
lambda = lambda/alpha; % decrease (lambda);
theta= theta_; % accept new parameters;
% calculate residual r(theta), cost function f
[f, r]= cost(y, lspkd, theta, Na, Np, u, order, option);
% calculate Jacobian J, gradient G, Hessian H;
J= jacobianPNLSSvsEF (1lspkd , theta ,order ,u,Np,option);
G= J’xr;% Gradient
H= J’xJ ;% Hessian
end;

Hld= Ht+lambdaxdiag(diag(H)) ;

theta.= theta — pinv(HId)*G; % parameters update;

% calculate new residual r_, new cost function f_;

[f_,r_]= cost(y, lspkd, theta_, Na, Np, u, order, option);

fprintf('run-%3.0f; _cost_-%3.2f.dB\n’,i+1, db(f./norm(y)));
i= i+1;

end;

theta= theta_; %final parameters estimate;

[E, F]= unflatten_theta (theta ,Na,Np);

= r1_;

loops= i;

end

T e 6 e e e e e e b 6 66 6 e e e e e B 6 60606 e e e Ve e 6066

% Sub—Function

T R I e e e e e e 6 e I e e e e e e B 6 6 6 6 e e e e e 60606

function [f, r]= cost(y, lspkd, theta, Na, Np, u, order, option)
[E, F]= unflatten_theta (theta ,Na,Np);
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r= PNLSSfilter (1spkd ,E,F,u, order ,option)—y;
f= norm(r);

end

function J= jacobianPNLSSvsEF (sys ,th,d,u,Np, option)
% Calculates the jacobian of sys output subject to u
% in regard to th= wector of nonlinear parameters.
% {input}

% sys: linear part of PNLSS model

% th: flattened NL polynomial matrices E, F of PLNSS model
% d: polynomial degree

% w: input model signal.

% Np: size of monomial vector

% option: option to include u in monomials

% {output}
% J: jacobian matriz of sys output.
%  Fach row is the gradient of the PNLSS model output sample vs.
%  the NL coeff wvector th
% J is T*N with T= length(u) and N= length (th)
%
%% Init Matrices
[A,B,C,D]= ssdata(sys);
Na= length(A);
[E,F]= unflatten_theta (th,Na,Np);
x= zeros(Na,1);% state vector
dx= zeros(Na, Np, Na);% each dz(i,j,:)= dx/dEij is a vector of length Na
T= length (u);
J= zeros(T,length(th));
%% init monomials pwr’s
switch option
case ’'x’ % polynomial in z only

a= getmonomialpwrs(Na,d);
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case ’'xu’ % polynomial in z and wu

a= getmonomialpwrs(Na+1,d);
case ’'lin’ % ’lin ’: linear option— no polynomial
a= ones (length(F) ,1);
end;
%% Recursive Calculus of Jacobian
for t= 1:T
switch option
case ’'x’ % polynomial in z only
p= monomials(x,a);
case ’'xu’ % polynomial in z and u
p= monomials ([x;u(t)],a);
case ’'lin’ % ’lin 7: linear option— no polynomial
p= zeros (Np,1);
end;
dp= diffmonomials(p,a,x); % jacobian dp/dx, matriz Np z Na
for j= 1:Np
for i= 1:Na
v= squeeze (dx(i,j,:)); % v= dz/dEij
J(t,i+(—1)*«(Na+1))= (C+Fxdp)xv; %dy/dFEij
v= (A+ Exdp)x*v;
v(i)=v(i)+ p(i);
dx(i,j,:)= v; % update dz/dEij
end; % i= Na
J(t,jx(Nat1))= p(j); % dy/dFj
end; % j= Np
x= Asxx+Bsu(t)+E+p; % update state
end; % t=T

end
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function [E, F]= unflatten_theta(q,na,np)

% Unflatten vector of polynomial coeff

% {input}

% qg: flat wvector of polynomial coeff
% q is ((na+1)xnp,1)

% na first dim

% np second dim

% {output}

% E is (na,np)
% F is (1,np)
%

Q= reshape(q,na+1,np);
E= Q(1l:na,:);

F= Q(Da+1,:);
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function y= PNLSSfilter (linss ,E,F,u,d, option)
% Apply PNLSS system on the input vector u with nonlinearity of order d
% {in}

% linss= linear ss system

% E, F= monomial coeff of order d

% u= input column wvector

% d= mazimum polynomial order (>= 2)

% option

% “lin 7: linear option— no polynomial added to the SS
% equations

% ‘x’: polynomial in x only

% ‘zu ’: polynomial in z and u (default)
% {out}

% y= output column vector

T I I I I e e I T e o I e e 6 e e e 6660
%% Initializations
e e e e R e e e e e e e Ve e 60666606 e e e 06
[A,B,C,D]= ssdata(linss);

y=0%u;

Na= length (A) ;

x= zeros(Na,1) ;% initial zero state

%%
if nargin— 5

option= ’xu’;% default option
end;

switch option % init monomials pwr’s
case ’'x’ % polynomial in z only
a= getmonomialpwrs(Na,d);
case ’'xu % polynomial in z and wu

a= getmonomialpwrs(Na+1,d);

case ’'lin’ % ’lin 7: linear option— no polynomial
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a= ones (length(F) ,1);

end;

)

BRI I I I I I I I I T I T I I T I TR0 0e 0 0e0e
%% Apply PNLSS
e e e e e e e e e e e Ve e 6060606606 e e e 06
for n=1:length(u)

p= CalculateP (x,u(n) ,a,option);

y(n)= Csxx4Dxu(n)+Fxp;

x= Asx4Bxu(n)+E+p; % Calculates z(n+1)
end;
e e e e R I e e e e e e Ve B 606 6 6606 e e e 0%
%% Subfunction
B I I I I I I R I I I I IR0 00 0e0e
function gq= CalculateP (x,un,pwr,option)
% Calculate monomial vector applying multi—index powers on elements of x

and un

% according to option

% {in}

% T, u: column vectors

% pwr: monomials powers. pwr(i,j)= exponent of z(j) in monomial(i)
% option

% “lin 7: linear option— no polynomial added to the SS
% equations

% ‘'z’ polynomial in z only

% ‘zu ’: polynomial in z and u (default)

% {out}

% p: column wvector of monomials of z

%

switch option % init monomials pwr’s

case ’'x’

q= monomials(x,pwr) ;

case ’'xu’
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g= monomials ([x;un],pwr);

q= zeros(size(pwr,1) ,1);

end;
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function dp= diffmonomials(p,a,x)
% yields all monomials derivative of degree 2 to d from zl,...zn
% {in} p: column wvector of monomials
% a: matriz of monomials powers
% z: column wvector of monomials entries
% {out} dp: jacobian dp/dx, matriz Np = Nz
%
Np= length(p);
Nx= length (x);
dp= zeros (Np,Nx) ;
for n= 1:Np
for m= 1:Nx
dp(1,m)= a(n,m)«p(n) /(x(m)+eps) ;
end;

end;




APPENDIX C. CODES NL OPTIMIZATION 135

function a= getmonomialpwrs(Nx,d)

% yields all monomial multi—indexr powers of degree 2 to d for wvector of

size Nz
% {in}
% Nz: wvector size
% d: degree >= 2
% {out}
% a: matriz of monomials powers.
% a(i,j)= exponent of x(j) in monomial(i)

%
Np= nchoosek (Nx+d,d)— 1— Nx;

a= zeros (Np,Nx) ;

k=1;
for r= 2:d
[tmp, ar]= multinom (Nx,r); % ar: matriz of monomials powers of
degree r

L= length(ar);
a(k:k+L—1,:)= flipud(ar);
k= ktL;

end
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function p= monomials(x,a)
% Get vector p of monomial values by applying multi—index powers a on =z

% {in}

% z: column wvector

% a: monomials powers. a(i,j)= exponent of x(j) in monomial(i)
% {out}

% p: column vector of monomials of x

%

Nx= length (x);
Np= size(a,l);
p= ones (Np,1);
for np= 1:Np
for nx= 1:Nx
p(np)= p(np)*x(nx) "a(np,nx); % apply powers on z wvalues
end;

end;
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function [p_,z_]= prunepz(sys)

% prunes poles, zeros of a sys

%{in}

% sys= system

%{ out}

% p_= reduced list of poles
% z_= reduced list of zeros

[p-,z-]= pzmap(sys);
[p-]= removepz(p-,3 % Trim remote poles first

% Trim remote zeros

)
[z_]= removepz(z_,3);
% disp(’zeros added at DC’);

% z.= [2_; 1];

% shownewsys(p-, z-, sys); % plot new frf along with old
% waitforbuttonpress;

% disp (’zeros added at Nyquist’);
% 2.= [2-; —1];
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% shownewsys(p-, z-, sys); % plot new frf along with old
% waitforbuttonpress;

stblsys= MinPhaseSS (zpk(z-,p-,1,1));

[p-,z_]= pzmap(stblsys);

%

[p-,z-]= prunePZpairs(p-,z-,0.3);

shownewsys(p-, z_, sys); % plot new frf along with old

end

R R R R R R R R e e e e e e e e e e e e e e e Fe Ve Ve Vel i i i i i e e
function [z_]= removepz(z, thr)
% remove wvalues in z, with mag bigger than thr or

% smaller than 1/thr

% {in}

% z= wector of complexr values
% thr= threshold on mag

% {out}

% z_= trimmed vector

n=1;

b

while (n <= length(z))

logdist= abs(db(z(n))); % log distance from wunit circle

if logdist > db(thr)

z(n,:)=[]; % remove value
else
n= n+1; % move to next
end;
end;
Z.= 7;
end

I e e V660
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function shownewsys(p, z, sys0)

% plot new frf and pz map along with old
% p, z= poles, zeros list

% sysO= old sys for ref

%

dt= sys0.Ts;

sys= zpk(z,p,1,dt);

figure (1) ;

pzplot (sys0, g’ ,sys,’'r’);

legend ( 'new._map’, ’original ’);

%

figure (2);

f= logspace(log10(20) ,log10(20e3) ,301);
GO0= squeeze (freqresp (sys0,2xpixf));

G= squeeze(freqresp (sys, 2xpixf));
semilogx (f, db([G_., GO0]));

legend ( 'new.frf’, ’original ’);

end

T T I e e e I e I e T e V6 T e Ve e e Ve e e e e e
function [p.,z_]= prunePZpairs(p,z,thr)
% remove p—z pairs that are closer than some threshold

% {in}

% p, z: poles, zeros list

% thr: threshold parameter

% {out}

% p_, z_: trimmed poles, zeros list
k= 1;

while k <= length(p)

nmin=1;

dist= abs(p(k)— z(1));

for n=2:length(z) % search closest zero to p(k)

newdist= abs(p(k)— z(n));

139
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if newdist < dist
nmin= n;
dist= newdist;
end;
end;

)

if dist/abs(exp(lj*angle(p(k)))— p(k)) < thr

p(k,:)= []; Jremove value
z(nmin ,:) =[]; %remove value
else
k= k+1; % move to mnext
end;

end;

p-=Dp; z.= 7;

end
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function stblsys= StabilizeSS (badsys)
% Stabilize a SS system by fizing the unstable poles.
% The outstanding poles are mirrored back inside the unit circle.
% The fized SS has the same FRF magnitude as the bad one.
% ({in} badsys= unstable SS
% {out} stblsys= stable SS
%
[z,p,g]= zpkdata(badsys); % yield cells
p= p{l}; %extract data inside cell
z= z{1}; %extract data inside cell
for k= 1:length(p)
if abs(p(k)) >1
p(k)= 1/conj(p(k));
g= gxabs(p(k)); % correct overall gain
end;
end;
Ts= badsys.Ts; % Sampling period
stblsys= zpk(z,p,g,Ts);

stblsys= ss(stblsys); % translation to SS
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function [G, z]= zpplot3D (zeros, poles , range)

% plot the rational complexr function defined by zeros & poles

% {in}

% zeros= list of zeros

% poles= list of poles

% range= [xzmin, zmax, ymin, ymaxr zmin zmazx] for plot
% {out}

% z= matrix of complex numbers used a plotting domain
% G= function plotted

%

x=linspace (range (1) ,range(2),101);
y=linspace (range (3) ,range (4) ,101);
[, y]=meshgrid (x, )

z= x+1lix*y;

G= zx*0;

[NM= size(G);

% %
for n= 1:N
for m= 1:M
num= prod(z(n,m)— zeros);
den= prod(z(n,m)— poles);
G(n,m)=db (num/den) ;
end;
end;

G= max(G, range (5)) ;
G= min (G, range (6) ) ;
%%

figure

surfl (x,y,G)
shading interp

colormap (copper)

in 3D
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grid on

box on

% azis equal
xlabel(’real’)
ylabel (’imag’)
zlabel (’dB’)

title ([ ’Zeros:.’, num2str(zeros’), ’;_Poles:.’ ,num2str(poles’)]);




APPENDIX D. CODES SYSTEM REDUCTION-STABILIZATION 144

function [p,z]= fo_pzmap (fosys ,info,f)

Y%FO_PZMAP display the (poles—zeros) alpha map of a fractional order
system along with the stability limits.

%

% SYNOPSIS: [p,z]= fo_-pzmap (fosys ,info,f)

%

% INPUT fosys: fractional order system

% info: [diff order, ss order, total error]

%

% OUTPUT p: list of poles alpha

% z: list of zeros alpha

% f: frequency range of stability limits
% REMARKS

%

% created with MATLAB wver.: 7.14.0.739 (R2012a) on Mac OS X Version:
10.8.4 Build: 12E55

%

% created by: Pascal Brunet

% DATE: 29— Jun—2013

%

%
I I I I R I I I I I I I T I I I I I I I T I I D I I I TR I 0 e

%% plot pzmap
alpha= info (1) ;
bestn= info(2);

besterr= info (3);

[p,z]= pzmap(fosys);
phi= alphaxpi/2;

if nargin==3

Ve
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b= (2+pixf)." alpha.xexp(1lj=*phi);
else
rmax= ceil (max([real ([p;z])/cos(phi);imag([p;z])/sin(phi)]));
b= (0:1:rmax)xexp(ljxphi);% stability borderline
end;
plot (real(p) ,imag(p),’xb’ ,real(z) ,imag(z),’ob’ ,...
real (b) ,imag(b),’r’ ,real(b),—imag(b),’r’);

grid;

xlabel(’real’), ylabel(’imag’);

info= [’Best.fit’,’—_.Diff_Order:.’, num?2str(alpha,2) ,...
'—_SS_Order: .’ ,num2str(bestn) ...
'—_ID_Error=.’ ,;num2str(besterr ,3) ,’dB’];

title (info);
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