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ABSTRACT 

A new model is presented that accurately predicts listener preference ratings of loudspeakers based on anechoic 
measurements. The model was tested using 70 different loudspeakers evaluated in 19 different listening tests. Its 
performance was compared to 2 models based on in-room measurements with 1/3-octave and 1/20-octave 
resolution, and 2 models based on sound power measurements, including the Consumers Union (CU) model, tested 
in Part One. The correlations between predicted and measured preference ratings were: 1.0 (our model), 0.91 (in­
room, 1/20th-octave), 0.87 (sound power model), 0.75 (in-room, 1/3-octave), and −0.22 (CU model). Models based 
on sound power are less accurate because they ignore the qualities of the perceptually important direct and early-
reflected sounds. The premise of the CU model is that the sound power response of the loudspeaker should be flat, 
which we show is negatively correlated with preference rating. It is also based on 1/3-octave measurements that are 
shown to produce less accurate predictions of sound quality. 

In Part One [1] we reviewed three loudspeaker INTRODUCTION models that predict sound quality ratings proposed by 
different authors. Three quite different approaches Properly controlled loudspeaker listening tests are are taken in how and where the loudspeaker should time-consuming, expensive and difficult to conduct. be measured. One approach is to predict the sound An alternative is to use a model that predicts quality using sound power measurements, with the listeners’ subjective ratings based on objective underlying assumption being that the total radiated measurements of the loudspeakers. sound power largely determines the loudspeaker’s 
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perceived quality in a room [2]-[5] The second 
approach favored by Staffeldt et al. [6]-[8] and 
Gabrielsonn et al. [9]-[11] is to model the 
loudspeaker’s sound quality using in-room 
loudspeaker measurements. The third approach 
proposed by Toole [12]-[13] and tested in this paper, 
is to predict the loudspeaker’s sound quality using a 
comprehensive set of anechoic measurements. 
Klippel’s model uses a hybrid approach combining 
the free-field on-axis response with an in-room or 
predicted in-room response [14]-[15]. 

A characteristic common to all of the above models, 
except ours, is the use 1/3-octave loudspeaker 
measurements. Our hypothesis is that models based 
on 1/3-octave data are inherently less accurate 
because the human hearing has much better 
resolution than this. We test this by comparing the 
performances of two in-room models based on 1/20 
and 1/3-octave data. The results have broad 
ramifications throughout the audio industry because 
1/3-octave measurements are commonly used to 
diagnose and equalize loudspeakers in rooms, and are 
endorsed in many international standards [16]. 

Our second hypothesis is that sound power-based 
models are inherently less accurate because they do 
not include sufficient information to characterize the 
direct and early-reflected sounds at the listener’s ears. 
The results from Part One of this paper support this 
hypothesis showing a correlation of − 0.22 between 
the measured and predicted sound quality ratings 
based on the CU sound power model.  To our 
knowledge, this is the first published test ever 
performed on the model, even though it has been 
used for over 30 years in Consumer Reports’ 
loudspeaker reviews. We do not have legal 
permission from CU to republish any details on their 
proprietary, unpublished model. However, in this 
paper we explain why it fails by analyzing the 
objective measurements of loudspeakers previously 
tested by CU. To avoid indicting all models based on 
sound power, we develop a new one that is optimized 
to predict loudspeaker preference ratings. Our end 
goal is to give each model an equal chance and select 
the best one on the merits of how well it predicts 
loudspeaker preference ratings. 

To clarify the goals of this paper we summarize the 
main research questions as follows:  

1. Can a predictive model based on the anechoic 
measured frequency response of a loudspeaker 
accurately predict listener preference ratings in a 
typical listening room such as the Harman multi­
channel listening lab? 

2. What are the model’s independent variables and 
their relative contribution to predicting listeners’ 
preference ratings? 

3. What is the relative accuracy of our model 
compared to predictive models based on sound 
power and in-room measurements? 

4. Do predictive models based on 1/3-octave 
measurements provide more accurate or less 
accurate predictions of preference compared to 
1/20-octave measurements? 

2 MULTIPLE REGRESSION ANALYSIS 

In this section a brief primer is given on multiple 
regression techniques so that the reader can better 
understand some of the terminology, principles and 
underlying statistical assumptions referred to in the 
following sections. Readers well versed in regression 
analysis can skip this section altogether. 

2.1 A Primer on Multiple Regression  

Regression analysis is a popular and mature 
multivariate statistical method first used by Legendre 
in 1805, but popularized by Pearson in 1903 [17].  It 
is used to predict the value of a single dependent 
variable using one (simple regression) or more 
(multiple regression) independent variables. Multiple 
regression assumes that the dependent, and usually 
the independent variables as well, are both metric. 
Metric variables are measured on interval-ratio scales 
as opposed to nominal categories. When the data are 
nonmetric, or involve more than one dependent 
variable, other multivariate techniques such as 
canonical correlation, multiple discriminate analysis 
and conjoint analysis may be more appropriate 
alternatives. 

In multiple regression analysis, each independent 
variable is weighted to maximize its ability to predict 
the value of the independent variable. Their 
respective weights denote the relative contribution 
and influence of each factor on the value of the 
outcome variable. The set of weighted independent 
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variables are known as the regression variate and 
define the model expressed as equation 1. 

Y 1 = b 0 + X b 1 + X b 2 + X b 3 + ... X b (1)1 2 3 n n 

where Y1 is the predicted dependent variable, X1 
through Xn are different independent variables and 
b1-bn is the weight or coefficient for each independent 
variable. The term b0 is a constant known as the y-
intercept. 

The key to designing accurate and robust models is 
selecting independent variables that maximize the 
predictive ability of the dependent variable, while at 
the same time ensuring that the independent variables 
are not highly correlated with each other (a condition 
known as collinearity). Various analysis and 
optimization techniques are available for this [18]. 
Finally, regression is a linear technique with four 
underlying assumptions that must be met: 1) linearity 
in the relationship between the dependent and 
independent variables 2) constant variance of the 
error terms (residuals) 3) normality of the error term 
distribution and 4) independence of the error terms. 
Statistical tests and examination of the standardized 
residual plots can determine whether the assumptions 
have been met. 

Approaches for estimating the regression variate 
include confirmatory and sequential searches. 
Sequential searches include step-wise and forward-
backward elimination where various independent 
variables are added or deleted to the model until 
some criterion is met. Combinatorial approaches test 
all possible subsets of variables. For models that have 
a large number of potential variables, the number of 
subsets can grow significantly (10 variables = 2 ^10 
or 1024 possible combinations). An algorithm known 
as “Leaps and Bounds” is a compromise between all 
subsets and forward-backward stepwise regression 
[19]. 

The accuracy of the model is based on how well the 
predicted values fit to or correlate with the observed 
values. The statistic commonly used is Pearson’s 
correlation coefficient (r) and its related coefficient of 
determination (r2). The latter represents the 
percentage of variance in the dependent variable 
accounted for by the model. The adjusted-r value 
takes into account the sample size and number of 
independent variables in the model and adjusts it 
accordingly. Mallow’s Cp criterion is a statistic 

particularly useful for all-subsets since it 
automatically accounts for the number of 
independent variables and prevents selection of a 
model that is over-fitted. An acceptable Cp value is 
equal to or lower than the number of independent 
variables in the model [20]. A common problem with 
regression models is that the models are over-fitted 
and are not very generalizable to other samples. This 
can happen when the ratio of observations to number 
of independent variables falls below 5:1. Ideally there 
should be 15-20 observations for each independent 
variable. Another common problem occurs with 
models that have high multicollinearity among 2 or 
more variables. As the correlation between 2 
variables increases above r = 0.3 there is a limit in the 
ability of each variable to explain and represent the 
unique effects on the dependent variable. As the 
correlation between 2 variables approaches r= 0.8 or 
higher, the sign of the coefficient can become 
reversed.  An extreme case known as a singularity 
occurs where the correlation between two variables is 
1. This prevents the estimate of any coefficients. 

The final step in developing a regression model is to 
validate the results. The results should be 
generalizable to the population (of speakers) and not 
specific to the sample used for estimation. The most 
direct approach to validation is to obtain another 
sample from the population and determine the 
correspondence in results between the two samples. 
In the absence of a new sample, other approaches are 
possible. 

3 MODEL DEVELOPMENT 

This section defines the set of independent variables 
used in our model including the scientific rationale 
for their selection. We examine the predictive power 
of each variable by looking at its correlation with the 
preference ratings from the listening tests reported in 
Part One [1]. (These test results from Part One shall 
be referred to hereafter as “Test One”). The 
multicollinearity or correlation between the 
independent variables is also examined.  

3.1 Premise of Our Model and Selection of 
Independent Variables 

There should be a strong theoretical basis for 
inclusion of any independent variable in a model so 
that the variable’s effect on the predicted outcome 
makes sense, and has a rational scientific explanation. 
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Our model is based on the premise that a 
loudspeaker’s preference rating is related to the mean 
amplitude deviation in its frequency response 
measured around its horizontal and vertical radiating 
orbits. A decrease in the mean measured amplitude 
deviations should correspond to an increase in the 
loudspeaker’s preference rating.  All of the 
independent variables in our model statistically 
quantify amplitude deviations in the loudspeaker 
frequency response. Therefore, our model only 
considers linear distortions related to frequency 
response.  

Our premise is supported by a substantial body of 
scientific evidence from previous loudspeaker studies 
[5]-[16], including the test results reported in Part 
One [1]. Together these studies show that the 
frequency response of the loudspeaker is the most 
important factor related to perceived sound quality.   

3.2 Definition of Independent Variables 

A total of 30 independent variables were considered 
as potential candidates for our model. These include 
four different statistical measures applied to each 
frequency response curves shown in fig. 1. Two of 
the variables are specifically related to the low 
frequency response of the loudspeaker.  

The 7 frequency response curves represent the on-
axis response (ON), the listening window (LW), the 
early-reflections (ER), the predicted in-room 
response (PIR), the sound power (SP), and two 
different directivity indices that represent the early 
reflections (ERDI) and sound power (SPDI). The 
rationale and calculation of the measurements was 
based on a statistical survey of loudspeaker setups in 
a large number of domestic listening rooms [21]. All 
the anechoic measurements have high frequency 
resolution (2 Hz) from 2 Hz to 20 kHz with a 1/20-
octave smoothing filter applied to the raw data. 
Spatial averaging is used for all 7 curves (except the 
on-axis curve) to remove interference and diffraction 
effects from the measurements. This helps separate 
these effects from resonances, which we believe have 
more serious audible consequences [12]-[13], [22]-
[23]. 

The 7 spatial averages allow independent assessment 
and prediction of the qualities of the direct, early-
reflected and reverberant sounds at the listener. The 
relative importance each component has on the 

overall perceived sound quality of the loudspeaker is 
represented by its relative contribution to predicting 
preference in the model. The direct sound is best 
characterized by the loudspeaker’s on-axis (ON) and 
listening window (LW) curves, while the early 
reflected and reverberant sounds can be predicted 
using the ER and SP curves, respectively. The 
predicted in-room response (PIR) represents a 
weighted average of the on-axis, early-reflected and 
sound power measurements. In previous papers (see 
figs. 18-20 in reference [13]), [21] the predicted in-
room response has been shown to accurately correlate 
with the actual measured in-room response between 
300-10kHz.  This is reconfirmed with new 
measurements reported in section 6.  

Throughout this paper, the nomenclature such as 
AADON is used to describe the independent variables. 
The first term describes the statistic or metric, while 
the subscript term indicates the measurement curve to 
which the statistic is applied. Table1 summarizes 
each statistical metric and the frequency response 
measurements involved in its calculation. 

3.2.1 Absolute Average Deviation 

The first statistic examined for the model is the 
absolute average deviation (AAD), expressed in dB 
as defined in equation 2 

Band=100Hz
( ⎛dB AAD ) =⎜∑Band=16kHz 

(yREF 400 200@ Hz −y n band ) ⎟⎞÷N (2)− ..⎝ ⎠

where the average absolute deviation in band n is 
calculated from the reference level yREF based on the 
mean amplitude between 200-400 Hz. The deviation 
is calculated in each 1/20-octave band over N bands 
from 100 Hz-16 kHz.  Higher values of AAD 
indicate larger deviations in amplitude from our 
reference band. Therefore the variable should be 
negatively correlated with preference according to 
our hypothesis. 

The use of a reference band of 200-400 Hz is based 
on an observation made in Part One (see section 4.8 
of [1]). When asked to judge the spectral balance of 
each loudspeaker across 6 frequency bands, listeners 
referenced or anchored their judgments to the band 
centered around 200 Hz. One plausible explanation is 
that many of the fundamentals of instruments, 
including voice, fall within 200-400 Hz, and the 
levels of the higher harmonics are referenced to it. 
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Figure 1 The 7 different frequency curves used in our model from top to bottom are: on-axis response (ON), the 
listening window (LW), the early reflected curve (ER), the predicted in-room response (PIR), the sound power (SP), 
and directivity indices (SPDI and (ERDI) related to the sound power and early reflections. For details see reference 
[21]. 

Table 1- Below is a description of the 6 statistics available to our model and the loudspeaker measurement curves to 
which they are applied. 

Statistic Description Measurement Applied to: 
AAD Absolute Average Deviation (dB) relative to 

mean level between 200-400 Hz 
ON, LW, ER, PIR, SP, ERDI, SPDI 

NBD Average Narrow Band Deviation (dB) in each 
½-octave band from 100 Hz- 12 kHz 

ON, LW, ER, PIR, SP, ERDI, SPDI 

SM Smoothness (r2) in amplitude response based 
on a linear regression line through 100 Hz -16 
kHz 

ON, LW, ER, PIR, SP, ERDI, SPDI 

SL 

LFX 

LFQ 

Slope of Best Fit linear regression line above  
(dB) 
Low frequency extension (Hz) based on -6 
dB frequency point transformed to log10 
Absolute average deviation (dB) in bass 
response from LFX to 300 Hz. 

ON, LW, ER, PIR, SP, ERDI, SPDI 

SP relative to mean sensitivity in LW 
from 300 Hz – 10 kHz 
SP relative to mean sensitivity in LW 
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An iterative method was used to vary both the 
bandwidth of the reference band as well as the range 
over which the deviation was calculated (from 100 
Hz to 20 kHz). The final parameters used in our 
model produced the highest correlation with the 
measured preference ratings. 

3.2.2 Narrow Band Deviation 

The narrow band deviation is defined by equation 3, 

⎛ Band =100Hz 

dBNBD ) = ⎜ ∑( y ⎞ − yb⎛ 1
⎜ nOctaveBand ⎟⎜ Band =12kHz ⎝ 2 ⎠⎝

where y⎛ 1 is the average amplitude value⎞
⎜ nOctaveBand ⎟
⎝ 2 ⎠

within the ½-octave band n, yb is the amplitude 
value of band b, and N is the total number of ½­
octave bands between 100 Hz-12 kHz. The mean 
absolute deviation within each ½-octave band is 
based a sample of 10 equally log-spaced data points. 

The final resolution and bandwidth parameters used 
to calculate NBD was determined using an 
optimization process to best predict the measured 
preference ratings of 70 loudspeakers. Whereas AAD 
measures deviations from flatness relative to the 
average level of the reference band 200-400 Hz, 
NBD measures deviations within a relatively narrow 
½-octave band. NBD might be a better metric for 
detecting medium and low Q resonances in the 
loudspeaker. 

3.2.3 Smoothness and Slope 

For each of the 7 frequency response curves, the 
overall smoothness (SM) and slope (SL) of the curve 
was determined by estimating the line that best fits 
the frequency curve over the range of 100 Hz-16 
kHz. This was done using a regression based on least 
square error. SM is the Pearson correlation 
coefficient of determination (r2) that describes the 
goodness of fit of the regression line defined by 
equation 4, 

SM = ⎜
⎛ n(∑ XY )− (∑ X )(∑Y ) ⎞

⎟
2 

(4) 
2⎜⎜ (n∑ X 2 − (∑ X ) )(n∑Y 2 − (∑Y )2 ) ⎟⎟⎝ ⎠

⎞ (3)⎟ ÷ N⎟
⎠

Loudspeaker Model- Part 2 

where n is number of data points used to estimate the 
regression curve and X and Y represent the measured 
versus estimated amplitude values of the regression 
line. A natural log transformation is applied to the 
measured frequency values (Hz) so that they are 
linearly spaced (see equation 5). Smoothness (SM) 
values can range from 0 to 1, with larger values 
representing smoother frequency response curves. 
Therefore SM is the only predictor variable in our 
model that should produce positive correlations with 
preference according to the premise of our model. 
The other statistic in our model is slope (SL), which 
is defined as b in equation 5, that mathematically 
defines the regression line that best fits to the 
measured frequency curve. Equation 5 is defined as: 

xiY
)
i = b ))(ln( + a (5) 

where Y
)

 is the predicted value (amplitude) of the 
regression line at a given frequency xi , b  is the 
slope, and a is the y-intercept. 

The raw slope value can have either negative (tilting 
downwards) or positive values (tilting upwards). In 
order to make sense to our model, we define slope 
(SL) in our model as the absolute difference between 
target slope, bT arg et versus the measured 

slope, bmeasured  as described in equation 6. 

SL = (6)bT arg et − bmeasured 

Target slopes were determined separately for Test 
One and for our larger test sample (70 loudspeakers) 
used for the generalized model described in section 5. 
The target values are based on the mean slope values 
of speakers that fall into the top 90 percentile based 
on preference ratings. Target slopes are defined for 
each of the 7 frequency curves (see table 2). The 
ideal target slope for the on-axis and listening 
window curves (0 and –0.2) is identical for both test 
samples, which indicates that the on-axis curve 
should be flat, while the off-axis curves should tilt 
gently downwards. The degree of tilt varies 
among curves for Test One and the larger sample. 
Test One includes mostly 2-way designs whereas the 
larger sample includes several 3-way and 4-way 
designs that tend to have wider dispersion (hence 
smaller negative target slopes) at mid and high 
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frequencies. This suggests that the ideal target 
slope may depend on the loudspeaker’s directivity. 
 

Table 2 Target slopes for each frequency curve based 
on samples from Test One and all 70 samples combined. 

Target Slope Value 
Measured All Tests 

Curve Test One (70 loudspeakers) 

LFQ is intended to quantify deviations in amplitude 
response over the bass region between the low 
frequency cut-off and 300 Hz. Speakers with good 
low bass extension may well have high deviations in 
amplitude response due to under/over damped 
alignments or incorrectly set subwoofer levels. The 
popular use of multiple woofers wired in parallel 
increases the directivity rapidly above 100 Hz, which 
also causes amplitude deviations in the sound power 
response.   

ON 0.0 0.0 
3.3 Predictive Power of Variables  LW -0.2 -0.2 

ER -1.2 -1.0 The predictive power of each independent variable 
PIR -2.1 -1.75 can be determined by calculating its partial 
SP -1.2 -1.0 correlation with preference rating for each of the 7 

ERDI 1.0 0.8 frequency curves.  This analysis is summarized in fig. 
2 based on the 13 loudspeakers from Test One. 

SPDI 2.0 1.4 Analysis of the larger sample of 70 loudspeakers 
showed similar trends. 

3.2.4 Low Frequency Extension and 
Quality If the premise of our preference model is well 

founded, all independent variables (except 
The low frequency extension (LFX) and quality smoothness) should produce negative correlations 
(LFQ) of the loudspeaker are the final two variables with preference since larger variable values represent 
in our model. LFX is defined by equation 7, larger deviations from an ideal frequency response. 

Smoothness (SM), on the other hand, should produce 
positive correlations since larger values of SMLFX = log10(xSP−6dB. re :y _ LW (300Hz−10kHz) (7) 
indicate increased smoothness in the frequency 
response. These assumptions are all true for the 

where LFX is the log10 of the first frequency x_SP variables NBD, LFX and LFQ, where higher values 
below 300 Hz in the sound power curve, that is -6 dB correspond to lower preference ratings.  For the other 
relative to the mean level y_LW  measured in variables (AAD, SL and SM), the expected
listening window (LW) between 300 Hz-10 kHz. magnitude and sign of the correlation vary 
LFX is log-transformed to produce a linear significantly depending on which curve the metric is 
relationship between the variable LFX and preference applied to. AAD shows the expected strong negative 
rating. The sound power curve (SP) is used for the correlation when it is applied to the on-axis and 
calculation because it better defines the true bass listening window curves (i.e. a flat response produces 
output of the loudspeaker, particularly speakers that higher preference ratings). But when applied to other 
have rear-firing ports.  measurements (ER, PIR and the two directivity 

indices), AAD has a weak correlation with 
Low frequency quality (LFQ) is defined by equation preference. When applied to sound power, AAD 
8, shows a relatively strong but positive correlation  (r = 

0.6) telling us that as the sound power response 
Band _ SP=LFX ⎞ becomes flatter it actually produces lower preference dB LFQ ) = ⎜⎛( ( y _ LW − y _ n) ⎟ ÷ N ratings. This finding completely contradicts the basic ∑Band _ SP=300Hz⎝ ⎠

(8) premise of the CU model, which defines perfection as 
a speaker with perfectly flat sound power. There is 

where the y is the level within each n band of the clearly something flawed in this premise. A better 

sound power curve calculated across N bands, from metric for assessing the quality of the sound power is 

the lowest frequency defined by LFX up to 300 Hz. smoothness, which has a correlation of  0.7 with 
preference. 
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Figure 2 The correlation (r) with preference for each of the 6 independent variables applied to the frequency curves 
shown in Fig. 1. The data are from Test One [1]. 
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Variables that have small correlations with 
preference are smoothness (SM) and slope (SL) when 
applied to the ON and LW curves, and AAD applied 
to ER and PIR. The two directivity indices generally 
yield poor correlations regardless of which metric is 
applied, with the exception of NBD.  In fact, the 
narrow band deviation (NBD) metric yields some of 
the highest correlations with preference, independent 
of the frequency curve to which it is applied. 

3.4 Multicollinearity among Model 
Variables 

An ideal regression model contains independent 
variables that are highly correlated to the predicted 
variable (i.e. preference rating) but are uncorrelated 
with each other [18]. The degree to which the 
independent variables show multicollinearity should 
always be assessed.  

We examined the multicollinearity among the 23 
independent variables considered in our model using 
principal component analysis (PCA). For the 
loudspeakers in Test One, five factors account for 
97% of the variance among the 23 independent 
variables. The interdependence among the 
independent variables is plotted using a correlation 
circle in fig. 3. 

It shows a projection of the 23 independent variables 
mapped into 2-dimensional factor space. Factors 1 
and 2 account for almost 81% of the variance 
represented within our model independent variables. 
Variables strongly associated with factors 1 and 2 are 
located far from the center along the x-axis and y-
axis, respectively. Close proximity between two 
variables indicates they are highly correlated with 
each other. Variables opposite to the center have 
negative correlation with each other. As expected, the 
metrics smoothness (SM) and narrow band deviation 
(NBD) are negatively correlated with each other. 
Slope (SL) and NBD appear also to be negatively 
correlated with each other and are associated with 
factor 2.  Variables highly associated with Factor 1 
include metrics applied to the on-axis sound 
(AAD_ON, NBD_ON) and to a lesser extent bass 
extension (LFX) and quality (LFQ).  

A certain degree of colinearity and redundancy exists 
among our 23 variables based on their close 
proximity to each other. Metrics that are closely 
related to one another (e.g. AAD and NBD), 

Loudspeaker Model- Part 2 

particularly when applied to the same curve or a 
related curve (e.g. ER versus SP, SPDI versus ERDI), 
tend to produce the greatest amount of colinearity.  

The variables NBD_ON, AAD_ON, LFX and model 
metrics applied to the predicted-in room response are 
all desirable predictor variables because they are 
strongly correlated with factors 1 and 2, but not 
overly correlated with each other. 

4  ANECHOIC MODEL FOR TEST ONE   

In this section we develop a model using anechoic 
measurements to predict the preference ratings of the 
13 loudspeakers in Test One. 

Multiple regression analysis of the 23 independent 
variables was performed using a program that 
calculates all possible models to determine the best 
one for a given number of variables (we chose 2-6 
variables). The best-fit model uses 5 variables 
producing a correlation of 1.0 (r = 0.995). The 
model’s equation is: 

RatingPref. = 6.04− L * 28.1 AAD_ON * 67.0 FX − LFQ * 66.0 −
+ SM_SP *3.58 SM_ON * 02.4 +

(9) 

Fig. 4 shows a plot of the measured versus predicted 
preference ratings showing that the measured values 
closely fit the predicted values from the model. The 
model accounts for 99% of the variance in the 
observed preference ratings. The adjusted-r value 
(0.96) is also high. The Mallow’s CP value is 4 
indicating that the model is not too over-fitted for the 
number of variables used. The RMS error of the 
predicted rating is very small, 0.26 preference rating. 

An ANOVA test indicated a very small probability 
that the model’s variables could produce the 
predicted results due to chance (F= 137.34, p 
<0.0001). 

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31 
Page 9 of 21 



Olive Loudspeaker Model- Part 2 

related to low frequency deviations contribute a 
M

ea
su

re
d 

Pr
ef

er
en

ce
 R

at
in

g 
7 

6 

5 

4 

3 

2 

1 

0 

Measured Preference Rating combined 25% to our model (LFQ=17%, LFX=6%). 

Finally, we examined the standardized residuals and 
found them to be  normally distributed with constant 
and independent variance. 

Table 3 −The proportional weighting of each variable 
in the model applied to Test One. 

Proportional Contribution in 
Model Variable Model (%) 
AAD_ON 18.64 
LFX 6.27 

0 1 2 3 4 5 6 

Predicted Preference Rating 

Figure 4 Plotted are the measured versus predicted 
preference ratings from Test One based on our 
anechoic model described by equation 9. 

4.1 Evaluating the Anechoic Model 

The coefficients in our model as described in 
equation 9 all have the expected sign according the 
premise of our model. All variables, except 
smoothness (SM), have negative coefficients 
indicating that smaller deviations in amplitude 
response produce an increase in preference ratings. 
The two variables defined by smoothness both have 
positive signs, indicating that higher values of 
smoothness produce large values of preference. All 
of the underlying assumptions of our model have 
been met. 

We now consider the relative contribution each 
variable has in predicting loudspeaker preference. 
Using the standardized coefficients for each variable 
in the model, we calculated the percentage each 
variable contributes in predicting the preference 
rating of the loudspeaker (see table 3).   

The variables related to the smoothness (SM) and 
average absolute deviation (AAD) of the on-axis 
curve have a combined weighting of 45% in our 
model. This tells us that the flatness and smoothness 
of the direct sound is an important factor in 
predicting sound quality. The next largest contributor 
is the smoothness of the sound power (SM_SP) 
weighted at 30%. The remaining two variables 

7 LFQ 18.64 
SM_SP 30.12 
SM_ON 26.34 

TOTAL  100.00 

5 TESTING THE ANECHOIC MODEL 

To test the generalizability of our model, we applied 
our model to an additional set of 57 loudspeakers 
evaluated in 18 different tests.  Later, we combine 
this sample with the 13 speakers from Test One to 
develop a generalized model based on 70 
loudspeakers.  

5.1 Selection of Loudspeakers 

The selection of 70 loudspeakers was based on the 
competitive samples purchased for performance 
benchmarking tests performed for each new JBL, 
Infinity and Revel model. 

The price range of samples varied from $100 to 
$25,000 per pair and includes models from 22 
different brands from 7 different countries: United 
States, Canada, Great Britain, France, Germany, 
Denmark and Japan. The loudspeakers included 
designs that incorporated horns and more traditional 
designs configured as 1-way to 4-ways. Some used 
waveguides, while others did not. The sample also 
included four professional 2-way active models 
referred to as “near-field” monitors. The vast 
majority of the speakers were forward-facing driver 
designs, with one electrostatic dipole sample. 
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5.2 Listening Tests 

The preference ratings for the 70 loudspeakers were 
based on a total of 19 listening tests conducted over 
the course of 15 months. All of the tests were 
performed under identical double-blind listening 
conditions, as described in Part One (see section 3). 
Controlled variables common to all 19 tests include 
listening room, program material, loudspeaker and 
listener location, playback level, experimental 
procedure and loudness normalization between 
speakers. 

The preference ratings in one of the tests are based on 
the mean preferences of 268 listeners (12 trained and 
256 untrained) reported in [24]. All other tests were 
done using trained listeners 

Loudspeaker Model- Part 2 

generalized model was necessary to accurately 
predict the ratings of our 70-loudspeaker sample. 

Using 23 independent variables, a model using 4 
independent variables was developed that has a 
correlation of 0.86 for the 70-loudspeaker sample. 
The model is described by equation 10. A plot of the 
measured versus predicted preference ratings is 
shown in fig. 5. 

Rating Pref. = 12.69 − NBD_ON * 2.49 − * 2.99 
 (10) 

NBD_PIR − LFX * 4.31 + SM_PIR * 2.32 

Measured Preference Rating 9 
There is one important difference between Test One 
and the other tests that is related to the experimental 
design. In Test One, we carefully controlled 
contextual effects by using a relatively large 
loudspeaker sample (13) and we compared all 
possible loudspeaker combinations in 13 separate 
tests [1]. While the procedure is labor-intensive and 
costly, it assures that any scaling errors related to 
contextual effects are balanced and minimized (see 
section 4.6 of [1] for a discussion of context effects]. 

In the new set of 18 listening tests, each test was 
performed as an independent evaluation of four M
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different samples, each model in the same 
competitive product and price class.  There were no 
anchors or references included in the tests to calibrate 
the preference scale, which is a relative one. We do 
not know the extent to which the accuracy of our 
generalized model is limited by a loss of precision 
from pooling subjective data from 18 unrelated tests. 
Possible solutions for comparing large samples and 
calibrating the preference scale are discussed in 
section 11. 

5.3 Generalized Anechoic Model 

Our anechoic model described in equation 9 was 
applied to the new larger loudspeaker sample and 
produced a correlation of 0.70 between the predicted 
and measured preference ratings. The lower 
correlation was likely related to the model being too 
tightly fitted to the small sample (13 loudspeakers) 
and/or the loss of precision from combining 
subjective data from 18 unrelated tests. A more 

0 1 2 3 4 5 6 7 8 

Predicted Preference Rating 

Figure 5 The measured versus predicted preference 
ratings based on the generalized model described in 
equation 10. 

An ANOVA test indicated a very small probability 
that the model’s variables could predict the ratings 
due to chance alone (4, 79; F=54.88, p<0.0001). The 
residual error from the model is 0.8 preference 
ratings. Examination of the residuals showed them to 
be normally distributed with constant and 
independent variance. 

The standardized coefficients were used to determine 
the proportional contribution of each variable 
towards predicting preference (see table 4).  The 
mean narrow band deviations in the on-axis curve 
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contribute a significant amount  (31.5%) to the 
predicted preference rating. The narrow band 
deviation (NBD) and smoothness (SM) of the 
predicted in-room response (PIR) contributes a 
combined 38%, with low frequency extension 
contributing 30.5%.  These findings are consistent 
with the model developed in Test One, where similar 
proportional weightings were given to the variables 
that describe the direct, early reflected, reverberant 
and low frequency sounds.  

Table 4 - The proportional weighting of each variable 
in the Generalized Model 
Model Variable Proportional Weight in Model (%) 
NBD_PIR 20.5 
NBD_ON 31.5 
LFX 30.5 
SM_PIR 17.5
 TOTAL 100.0 

COMPARISON OF MODEL BASED ON 
IN-ROOM MEASUREMENTS 

Our first two research questions in section 1 have 
now been answered. We have shown two models 
based on a set of anechoic measurements that 
accurately predict loudspeaker preference ratings, and 
identified those variables that contribute to predicting 
sound quality. 

Loudspeaker Model- Part 2 

We now turn our attention to the first part of research 
question three that asked, what is the relative 
performance of models based on in-room 
measurements? Two in-room models are developed 
that use the same measurements but are post-
smoothed using a 1/20-octave and 1/3-octave filter. 
This is done to answer research question 4, which 
posits the hypothesis that models based on 1/3-octave 
measurements are inherently less accurate in 
predicting sound quality.  

In-room measurements were made of the 13 
loudspeakers from Test One using the exact physical 
setup used for the listening tests. A diffuse-field 
microphone was positioned at the listener’s chair, at 
average ear height, 3 m. away from the loudspeaker. 
The loudspeaker was placed 1.2 m from the rear wall, 
slightly off-center from the side walls of the room.  A 
total of 9 measurements were taken at 0º, ± 10º, ± 20º 
and ± 30º horizontal, and ± 10º vertical. The 
measurements were averaged to produce a measured 
in-room response. All measurements were made 
using 2 Hz frequency-resolution with the 1/20-octave 
and 1/3-octave smoothing filter applied to the raw 
data. 

 Fig. 6 compares the anechoic measured predicted in-
room response (PIR) of loudspeaker with its 
measured in-room response using 1/20 and 1/3-
octave smoothing. 

SP
L 

(d
B

) 

95

90

85

80

75

70

65

i

/

Speaker 1 Anecho c Measured PIR 

Measured In-Room 1 20-octave smoothed 

Measured In-Room 1/3-octave smoothed 

10 100 1000 10000 100000 

F r e q u e n c y  (Hz) 

Figure 6 The predicted in-room response (PIR) (1/20-octave smoothing) of a loudspeaker versus its measured in-
room response 1/20-octave and 1/3-octave smoothing. All measurements have frequency resolution of 2 Hz. 
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There is very good agreement between the curves 15 

except below 300 Hz and above 10 kHz, where room 10 

mode effects and room absorption are not accounted 
for in the predicted in-room response.   

Fig. 7 shows the average difference between the 
predicted and measured in room response (1/20-
octave resolution) based on an average of 13 
loudspeakers in Test One. Again we see that the M
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predicted in-room response closely matches the -20 
10 100 1000 10000 100000 actual measured in-room response. The good 

agreement between the two suggests that the Frequency (Hz)

differences between models using predicted or Figure 7 The difference between the predicted and 
measured in-room curves should be small as well.  measured in-room response based on 13 loudspeakers 

in Test One. 
Three predictive models were developed using three 
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1.00 curve 1/20-octave smoothed and 3) the same as 2) but 
0.90 using 1/3-octave smoothing. With only one frequency 
0.80 curve available to the model there are just 5 possible 
0.70 independent variables:  NBD, SM, SL, LFX and 

LFQ, all applied to the predicted or measured in- 0.60 

room curves. For the measured in-room curves, LFX 0.50 

and LFQ values were calculated based on the 0.40 

measured in-room curve, rather than using the sound 0.30 

power response referenced to the listening window 0.20 

curve, as in our earlier models. r r 2̂ r 2̂-adjusted 

The correlation coefficients r, r2 and the adjusted-r2 Figure 8 The correlations of 3 models based on the 
values are shown for the best-fitted models in fig 8. predicted and measured in-room responses with 1/20 
The correlation between predicted and measured and 1/3-octave smoothing. 
preference rating is highest for the model based on 
the anechoic predicted in-room response (r=0.94) 
followed by the measured in-room response using 

0.80 
1/20-octave resolution (r =0.91). The model using the 
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r)1/3-octave smoothed in-room data had the lowest 
correlation with measured preference (r=0.75).  

The explanation for this result can be found by 
comparing the correlation values for the five 
independent variables available to the model (see fig. 
9).  The 1/3-octave data produce consistently lower 
correlations with preference ratings across four of the 
five variables. The errors from the coarse smoothing 

0.60 

0.40 

0.20 

0.00 

-0.20 

-0.40 

-0.60 

-0.80 misrepresent the true differences in the loudspeakers’ 
SM_PIR SL_PIR NBD_PIR LFX LFQ frequency responses defined by smoothness, slope, 

narrow band deviation and low frequency deviation. Model Variable 
The human ear is clearly better at distinguishing Figure 9 The correlation with preference for the 5 
these differences than a 1/3-octave measurement.   independent variables available to the 3 models in 

fig. 8. based on predicted and in-room measurements. 
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An important distinction needs to be made between 
the 1/3-octave measurements shown here (2 Hz 
resolution data that is post-smoothed) and 
measurements made with 1/3-octave analyzers that 
use filters having fixed center frequencies. These 
devices will produce measurements less accurate than 
ours and we expect that they would yield even less 
accurate models. 

7 COMPARISON OF MODELS BASED ON 
SOUND POWER MEASUREMENTS 

The second part to research question three asks 
whether models based on sound power measurements 
can accurately predict loudspeaker preference ratings. 
The CU model tested in Part One is only one 
example of a model based on sound power. First, we 
re-visit the CU model to explain why it failed to 
accurately predict loudspeaker preference. What we 
learn from this may help to improve the new model 
based on sound power developed in section 7.3. 

7.1 CU Model Revisited  

Some evidence was uncovered in section 3.1 
suggesting the underlying premise of the CU model 
may be flawed.  The 100-point accuracy score it 
predicts is based, in large part, on how far the power 
response deviates from a flat target curve over a 
specific bandwidth. The deviations are calculated 
based on loudness errors using a simple loudness 
model [2]. In section 3.1, one variable related to 
flatness of sound power, absolute average deviation 
(AAD) from flat (relative to 200-400 Hz) showed a 
positive correlation (0.6) with preference rating. This 
implies that flat sound power response is not a good 
target for achieving higher preference ratings.  

To explore this further the 13 loudspeakers from Test 
One are plotted in fig. 10 (a). Plotted for each speaker 
are the smoothness and raw slope values for sound 
power. The raw slope values are used to remove any 
presumption about what is an ideal target slope. The 
raw slope values for the listening window (LW) are 
plotted as well to study the interrelationship between 
preference and the qualities of the listening window 
and sound power curves. The loudspeakers are 
plotted (from left to right) in descending order of 
their measured preference rating, which is 
transformed by a factor of 0.1 to fit the ratings on the 
same scale as the independent variables. 

Loudspeaker Model- Part 2 

The plot clearly shows a monotonic relationship 
between the three independent variables and 
preference. As the slope of the sound power rises 
towards 0 (which is the CU model’s target), the 
preference rating falls.  The slope of the listening 
window (LW) more or less tracks the sound power 
slope. Higher slope values, indicating a rising 
response on-axis, correspond to lower preference 
ratings. Lower smoothness values in the sound power 
also correspond to lower preference ratings.  All of 
these observations nicely conform to the underlying 
premise of our preference model defined in section 
3.1. 

Fig. 10(b) shows the same data as fig. 10 (a) except 
here the data are plotted from left to right in 
descending order of the predicted accuracy rating 
according to the CU model. The accuracy rating has 
been transformed by a factor of 0.01 to fit on the 
same scale. The first noticeable difference between 
the graphs is the reversal in the directions of the 
curves denoting the raw slope values and smoothness 
values for the sound power curve. As the sound 
power slope falls from zero (flat), the speaker’s 
predicted accuracy rating tends to drop. This clarifies 
the basic premise of the CU model where increased 
flatness in sound power response is associated with 
higher accuracy ratings.   

The criteria on which the CU accuracy and 
preference models are based seem incompatible. This 
becomes more obvious in fig. 11 where we plot the 
correlations with accuracy versus preference for five 
independent variables applied to the sound power and 
listening window curves. In all five cases, variables 
that are positively correlated with preference are 
negatively correlated with sound accuracy, and vice 
versa.  Speaker characteristics that produce higher 
preference ratings produce lower accuracy ratings, 
including smooth sound power response with a 
downward tilt (i.e. slope < 0) and a smooth, relatively 
flat frequency response in the listening window.  The 
reason that the CU model penalizes attributes 
positively associated with preference is more related 
to its failure to include other measures of loudspeaker 
sound quality besides flatness of sound power (which 
is unfortunately an incorrect premise). Some of the 
blame must be attributed to the use of 1/3-octave 
measurements, which we have shown produce less 
accurate predictions of sound quality. 
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Figure 10 The values for the variables smoothness (SM) and slope (SL) applied to sound power (SP), and the values 
of the slope of the listening window (LW) for loudspeakers in Test One. The raw slope values are shown. The top 
graph plots the speakers in descending order of measured preference rating. The bottom graph plots the speakers in 
descending order of their accuracy rating. Both preference and accuracy ratings have been linearly transformed to fit 
on the same scale.  
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Olive Loudspeaker Model- Part 2 

 Fig. 12 shows the measured versus predicted accuracy
                                                                                                     ratings for each of the 13 loudspeakers.  
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Figure 12 A plot of the measured versus predicted 
accuracy ratings using our modified CU model 
described in equation 11. The measured values are 
based on published CU accuracy ratings for the 
speakers in Test One. 

It is difficult to determine if the signs of the 
coefficients in equation 11 are correct, given that the 
only known premise of the model is that the sound 
power be flat. Using the premise of our preference 
model, we see that the signs of the coefficients are 
reversed for 3 of the 6 variables: NBD_PIR, LFX, 
and SL_ER. According to this version of the 
accuracy model, higher accuracy ratings will be 
given to loudspeakers that have less extended bass, 
more narrow band amplitude deviations in the 
predicted in-room response and slopes in the early 
reflected curves that deviate from our target slope of -1.   

This is just another way of demonstrating that 
designing a loudspeaker to achieve high accuracy 
ratings according to the CU model may result in 
serious compromises in sound quality that will 
produce lower preference ratings. The listening test 
results from Part One is a clear example, where the 
correlation between preference and accuracy rating 
was found to be r= –0.22. The speakers with the 
flattest sound power had rising frequency responses 
on-axis and/or reduced low frequency extension. 
Both are necessary compromises to achieve flat 
sound power for speakers that have a rising 

Figure 11 
preference 

Model Independent Variable 

The correlation between measured 
and CU accuracy ratings for 5 

independent variables that measure amplitude 
deviations in the sound power and listening window. 
The data are based on the loudspeakers in Test One. 

7.2 A Modified Accuracy Model Based on 
Preference Model Variables 

Loudspeaker manufacturers may want to determine 
in advance the accuracy rating of a loudspeaker 
before it is sold and tested by CU. In most cases, 
replicating the CU measurements and model is not 
likely feasible or practical.  The author wondered 
whether he could develop a model to predict CU 
accuracy ratings using the existing measurements and 
independent variables from Test One.  

Using the 13 loudspeakers from Test One, a model 
was developed that predicted their measured 
accuracy ratings with a correlation of 0.99 using 6 
variables (see equation 11). 

Rating Accuracy = 69.26 − AAD_ON * 12.88 + 40.69 
NBD_PIR * + LFX * 19.97 + SM_PIR * 14.91 − SL_ON * 13.03 

+ SL_ER * 29.9 
(11)
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directivity at higher frequencies. Such speakers 
represent the vast majority of all speakers sold. A 
speaker with constant, flat directivity could 
theoretically satisfy the flat sound power criterion 
and still achieve high preference ratings, so long as it 
had a smooth on-axis response well-maintained off-
axis. However, such speakers are not widely 
available.

7.3 A Better Sound Power Model 

Loudspeaker Model- Part 2 

the same underlying assumptions made in our 
preference model defined by equations 9 and 10. The 
model states that the predicted preference rating will 
decrease as the mean narrow band deviations in the 
sound power increase and with larger deviation from 
the defined target slope (-1).  An increase in the 
smoothness of the sound power response corresponds 
to an increase in the predicted preference rating.  

Measured Preference Rating 
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It may be possible to design a better sound power 
model if we ignore the premise that the loudspeaker’s 
sound power response should be flat and we use 
higher resolution, 1/20-octave measurements. If we 
can design such a model, how accurate are its 
predictions of sound quality compared to our 
anechoic and in-room measurement models? 

Two sound power models were developed to predict 
the measured preference ratings from Test One and 0 1 2 3 4 5 6 
the 70 speakers used in our earlier generalized Predicted Preference Rating
preference model. The three variables available to (a)our model are: narrow band deviations (NDB), 
smoothness (SM) and slope (deviation from a target 
slope) all applied to the sound power curve. The two 
models are defined by equations 12 and 13. 

Measured Preference Rating 9 
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.Pr Rating ef = 63.2 − * 86.2 NBD _ SP 
+ * 15.5 SM SP + * 417.0 SL SP

(12) 

.Pr Rating ef = 7.6 − * 99.6 NBD _ SP 
(13)

* 83.2 SM SP * 15.1 SL SP+ +

For the first and second models the correlations with 0 1 2 3 4 5 6 7 8 
the measured preference ratings are 0.87 and 0.79, 
respectively. The correlations are quite respectable 
compared to the CU model (r= −0.22) also based on 
sound power. Our sound power model is also better 
than the in-room model (r= 0.75) based on 1/3-octave 
smoothed data but not quite as good as the in-room 
model based on 1/20-octave smoothed measurements 
(r= 0.91). Yet, our best sound power model does still 
not perform as well as our preference model that uses 
the complete set of anechoic data (r= 1.0). 

Figs. 13(a) and (b) show the measured versus 
predicted preference ratings for the two models, 
respectively. The coefficients of the model all meet 

Predicted Preference Rating 

Figure 13 A plot of the measured versus predicted 
preference ratings based on sound power models 
defined by equation 12 (top graph, Test One) and 
equation 13 (generalized model for 70 loudspeakers). 

In conclusion, sound power models can give 
reasonably good predictions of loudspeaker sound 
quality so long as they use measurement data with 
adequate frequency resolution, and the models are 
premised on legitimate performance targets. 
However, the accuracy of the predictions is still not 
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as good as those produced with our models that 
include additional information related to the direct 
and early-reflected sounds. 

DISCUSSION 

One of the ancillary discoveries in this study is that 
the quality of the direct sound produced by the 
loudspeaker is an important contributor to the 
listeners’ overall preference rating, in addition to 
smooth off-axis frequency response. Both of our 
models described in equations 9 and 10 give 
relatively large weighting (45% and 32%) to the 
quality of the direct sound based on the on-axis 
curve. If you consider that the predicted in-room 
response includes a weighted portion of the on-axis 
sound, the contribution is slightly greater. The 
important role of the direct sound is well founded in 
localization and timbre perception theory [25]-[26]. 
It’s responsible for triggering the precedence effect 
and forward masking. Those models we tested that 
did not include the direct sound as an independent 
variable (i.e. the in-room and sound power models) 
produced less accurate predictions of sound quality. 
This could explain why they did not perform as well 
as our model that includes separate measures of both 
the direct, early-reflected and reverberant sounds.   

The relatively good performance of the model 
(r=0.91) based on in-room loudspeaker 
measurements (1/20-octave smoothing) is promising. 
It may provide an alternative approach for assessing 
loudspeaker performance where anechoic 
measurements are not available. However, we 
caution their use until more experiments with 
additional speakers and rooms are completed. 
Moving the loudspeakers closer to room boundaries 
where reflections can cause interference and solid 
angle gain from the well-known Allison effect [27] 
may affect the accuracy of the model.  

It is clear that the accuracy of all models depends on 
the frequency resolution of the measurements. Using 
1/3-octave smoothing produces less accurate models 
than those based on 1/20-octave smoothed 
measurements. Measurements based on 1/3-octave 
analyzers with fixed center frequency filters will 
likely produce even worse results. The ITU-R 
BS1116 recommendation specifies an in-room 1/3-
octave loudspeaker response of ± 3 dB between 50 
Hz and 2 kHz rising to +3/-6 dB at 16 kHz [16]. Our 
study clearly shows this cannot adequately 
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distinguish good loudspeakers from mediocre ones. 
Many of the speakers we measured would meet the 
ITU performance specification in spite of their very 
low preference ratings. To borrow a quote from 
Toole, an ITU compliant loudspeaker guarantees 
nothing more than that you will be able to tap your 
foot to the beat and recognize the melody of music 
played through it.  

We have not yet implemented and compared the 
performance of our model against the Klippel model 
described in [14]. It is impossible to make 
meaningful comparisons indirectly due to differences 
in loudspeaker samples and measurement procedures. 
Both models are based on similar loudspeaker 
measurements, except Klippel’s model is based on 
1/3-octave measurement, which we found produces 
less accurate models. Klippel’s model uses a 
weighted combination of the free-field on-axis 
response and the measured or predicted in-room 
response. This would explain why both models 
produce good correlations with subjective results. 
One difference is that Klippel uses a perceptual-based 
critical band model to calculate loudness errors in a 
program reproduced through the loudspeaker. Our 
model may be further improved through the addition 
of a perceptual model. This question will hopefully 
be addressed in a future paper.  

9 CONCLUSIONS 

A new model has been developed that accurately 
predicts preference ratings of loudspeakers based on 
their anechoic measured frequency response. Our 
model produced near-perfect correlation (r = 0.995) 
with measured preferences based on a sample of  13 
loudspeakers reported in Part One. Our generalized 
model produced a correlation of 0.86 using a 
sample of 70 loudspeakers evaluated in 19 listening 
tests. Higher correlations may be possible as we 
improve the accuracy and resolution of our subjective 
measurements,which is a current limiting factor. 
  
The independent variables that predict loudspeaker 
preference rating include measures of the amplitude 
deviations in the on-axis response, the predicted-in-
room response and the low frequency response. Each 
sound component in the model has equal importance 
in predicting preference. The predicted in-room 
response of the loudspeaker captures amplitude 
deviations in the direct, early-reflected and 
reverberant sounds and it was found to correlate well 
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with the measured in-room response of the 
loudspeaker. 

The performance of our model was compared against 
two sound power models and two models based on 
in-room measurements. The correlations of the 
different models from best to worst based on their 
predicted versus measured correlation were: our 
anechoic model (1.0), the in-room model based on 
1/20-octave smoothed data (0.91), our sound power 
model (0.87), the in-room model based on 1/3-octave 
smoothed data (0.75) and the CU model (- 0.22). 

Models based on in-room and sound power 
measurements most likely produce less accurate 
predictions of sound quality because they are unable 
include separate quality measures of the direct and 
early-reflected sounds. These components are shown 
to be important variables in our model for predicting 
loudspeaker preference. 

Models based on 1/3-octave measurements produce 
less accurate predictions of sound quality. The CU 
model is the least accurate model tested because it is 
based on sound power and uses 1/3-octave data.  The 
model is premised on deviations in amplitude from a 
flat sound power response, a target we found to be 
negatively correlated with preference. To achieve flat 
sound power, traditional speakers with frequency-
dependent directivity must sacrifice the quality of the 
direct and early-reflected sounds that according to 
our model result in lower preference ratings. 

10 LIMITATIONS OF MODEL 

The conclusions in this study may only be safely 
generalized to the conditions in which the tests were 
performed. Some of the possible limitations are listed 
below.  

1. Up to this point, the model has been tested in one 
listening room. 

2. The model doesn’t include variables that account 
for nonlinear distortion (and to a lesser extent, 
perceived spatial attributes). 

3. The model is limited to the specific types of 
loudspeakers in our sample of 70. 

4. The model’s accuracy is limited by the accuracy 
of the subjective measurements. 

Loudspeaker Model- Part 2 

The acoustical properties of the listening room used 
in the development of this model are not unlike those 
of many professional and domestic listening rooms. It 
meets current requirements of ITU-R BS 1116 and its 
reverberation time (RT60 = 0.3 s.) falls close to the 
average value of 0.4 s measured in 603 domestic 
rooms by Bradley [28]. On this basis, it is more than 
likely our model can be generalized to many typical 
rooms.  

The effects of nonlinear distortion on preference are 
not factored into our model. Listeners did not report 
nonlinear distortion as factoring into their preference 
ratings, except in the one or two cases reported  in 
Part One. In other large loudspeaker studies 
conducted by Toole [12]-[13] and Klippel [14] both 
authors concluded that nearly all of the variance in 
listener sound quality ratings can be explained by 
frequency response. Still, nonlinear distortion can be 
a factor and should not be ignored. 

The relationship between loudspeaker measurements 
and perceived spatial attributes remains elusive. 
Based on a principal component analysis of listener 
comments in Part One (see section 4.13), we found 
that timbre-related attributes accounted for 94% of 
the variance in comments whereas nonlinear 
distortion and spatial-related attributes only 
contributed 3% each. It is our experience that timbre 
is the dominant factor related to loudspeaker 
preference, and speakers that accurately reproduce 
timbre generally have favorable spatial properties. 
Toole reported high correlation between fidelity 
ratings (conducted in mono) and spatial ratings (in 
stereo) and found that most of the spatial effects are 
strongly related to the recording techniques used in 
the recording [12]-[13]. Klippel reported that the 
perceived spaciousness of the loudspeaker is an 
important dimension that is related to its directivity 
[14]. In this study, loudspeaker directivity by itself 
had little predictive power of listener preference. It is 
unclear what the ideal directivity of the loudspeaker 
should be, except that it should be smooth. Perhaps 
the question will become less relevant with 
multichannel audio where the recording artist has the 
power to control the balance of the direct, reflected 
and reverberant sounds within the recording itself. 

The loudspeaker sample used in this study may not 
explain or apply to loudspeakers that have unusual 
directivities (e.g. omni-directional).  Our sample is 
however representative of the vast majority of 
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speakers sold today. The range in quality and price 
($100-$25,000 per pair) of the sample was quite large 
excluding only the very least and most expensive 
models. 

Our final limitation is the accuracy of our subjective 
data. The model from Test One produced a 
correlation of 1. Test One was very tightly designed 
with 13 sessions to control contextual effects. Our 
model’s correlation slipped to 0.86 when applied to 
our listening test data gathered from 18 independent 
tests. We believe that the lower correlation is, in 
part, due to differences in how well the listening tests 
were controlled. The lack of a calibrated and 
anchored preference scale across the 18 tests most 
likely resulted in contextual effects and other 
associated scaling errors in the listener ratings.  A 
solution to this challenging problem is discussed in 
the following section. 

11 FUTURE WORK 

Future work will address some of the limitations 
described in section 10. The model will be tested and 
verified in different types of listening rooms. A 
listening room with adjustable acoustics is being 
designed.  Subjective effects related to loudspeaker-
room interactions, if necessary, will be included in 
the model. To facilitate comparison of multiple 
loudspeakers in different rooms and to control the 
variable loudspeaker position, a portable index table 
has been developed. 

There is a need to better understand the effects each 
independent variable has on listener preference by 
manipulating the variable in isolation while 
controlling the other independent variables. To do 
this efficiently, an adjustable loudspeaker has been 
developed that will allow real-time manipulation of 
the direct, early-reflected and reverberant sounds. 
The speaker will allow us to simulate a wide range of 
different speakers in real-time so that many speakers 
can be compared in a single listening trial. The ITU 
MUSHRA method will allow up to 15 speakers to be 
compared with a hidden reference and anchors [29]. 
This should help calibrate the preference scale and 
reduce the contextual effects that occur from 
comparing a small sample of loudspeakers  within    a 
narrow context.

Loudspeaker Model- Part 2 

12 ACKNOWLEDGMENT 

The author would like to thank Harman International 
who supported this work. This paper involved 
literally hundreds of hours of listening, loudspeaker 
measurements and data analysis that could not have 
been done without the valuable contribution of many 
people He is thankful to all of the listeners involved 
in these tests, and in particular, Sean Barton and John 
Jackson who conducted all of the subjective and 
objective measurements that produced the data for 
these models. The pioneering loudspeaker research of 
Floyd Toole conducted at the National Research 
Council of Canada in the 1980’s led to the 
development of the objective measurements used in 
this model, and he deserves much of the credit. 
Verification and further refinement of his 
measurements were provided by Allan Devantier, and 
they are part of this model. Finally, the author would 
like to thank his wife, Valerie, and Floyd Toole who 
proofread this paper. 

13 REFERENCES 

[1] Olive, Sean, “A Multiple Regression Model For 
Predicting Loudspeaker Preference Using Objective 
Measurements: Part 1-Listening Test Results”, presented 
at the 116th AES Convention, Berlin, Germany, preprint 
6113, (May 2004). 

[2] Consumer's Union, "Loudspeaker Accuracy: CU's 
Tests," 38, 456-457, (1973August). 

[3] “Small Boxes, big sound”, Consumer Reports, 
pp. 33-37, (Aug. 2001). 

[4] Rosenberg, U. "Loudspeaker Measurement and 
Consumer Information," AES 44thConvention (Feb. 
1973). 

[5] Gabrielsonn, A., Rosenberg U., and Sjogren, H. 
"Judgments and dimension analyses of perceived sound 
quality of sound-reproducing systems", J. Acoust. Soc. 
Am. 55(4), 854-861. (1974) 

[6] Staffeldt, H. “Correlation Between subjective and 
objective data for quality listening tests”, J. Audio Eng. 
Soc., No. 22, pp. 402- 415, (1974 July/Aug.). 

[7] Staffeldt, H. and Rasmussen, E. “The 
Subjectively Perceived Frequency Response in Small 
and Medium Sized Rooms,” Soc. Of Motion Picture and 
TV Eng., J. SMPTE (1982 July). 

[8] Staffeldt, H., “Measurement and Prediction of the 
Timbre of Sound Reproduction,” J. Audio Eng. Soc., 
Vol. 32, No. 6. pp. 410-414. (June 1984). 

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31 
Page 20 of 21 



Olive Loudspeaker Model- Part 2 

[9] Gabrielsonn, A.,” Loudspeaker frequency 825. (2003 Sept.). 
response and perceived sound quality", J. Acoust. Soc. 
Am., 90(2), Pt. 1, pp. 707-719, (1991). 

[10] Gabrielsonn, A, Hagerman, Bjorn, Bech-
Kristensen, T., & Lundberg, G., "Perceived sound 
quality of reproductions with different frequency 
responses and sound levels", J. Acoust. Soc. Am., 83(3), 
pp. 1359-1366 (1990). 

[11] Gabrielsonn, A. and Lindstrom, B.  "Perceived 
Sound Quality of High-Fidelity Loudspeakers", J. Audio 
Eng. Soc., 33, pp. 33-53. (1985). 

[12] Toole, F.E. "Loudspeaker Measurements and 
their Relationship to Listener Preferences: Part 1", J. 
Audio Eng. Soc., 34, pp.227, (1986). 

[13] Toole, F.E., "Loudspeaker Measurements and 
their Relationship to Listener Preferences: Part 2", J. 
Audio Eng. Soc., 34, pp. 323-348, (1986). 

[14] Klippel, W. “Multidimensional Relationship 
between Subjective Listening Impression and Objective 
Loudspeaker Parameters,” Acustica, Vol. 70, pp. 45-54. 
(1990). 

[15] Klippel, W., "Assessing the Subjectively 
Perceived Loudspeaker Quality on the Basis of 
Objective Parameters," presented at the 88th AES 
Convention, Montreux, preprint 2929 (J5). (1990). 

[16] ITU-R BS 1116-1, “Methods for the subjective 
assessment of small impairments in audio systems 
including multichannel audio systems” (1994-1997) 

[17] WordIQ, “Linear Regression” see 
http://www.wordiq.com/definition/Linear_regression 

[18] Hair, Anderson, Tatham and Black, 
"Multivariate Data Analysis", 5th edition, Prentice Hall, 
New Jersey, (1998). 

[19] Mallows C.P. “Choosing a Subset Regression”, 
Joint Statistical Meetings, Los Angeles, CA (1966). 

[20] Furnival and Wilson, “Regression by Leaps and 
Bounds”, Technometrics, vol. 16, 4 (November 1974) 

[21] Devantier, A., "Characterizing the Amplitude 
Response of Loudspeaker Systems", presented at the 
113th AES Convention, Los Angeles, USA, preprint 
5638 (October 2002). 

[22] Toole, F. and Olive. S., "Perception and 
Measurement of Resonances", J. Audio Eng. Soc., 36(3), 
122-141, (1989). 

[23] Olive, P. Schuck, J. Ryan, S. Sally, M. 
Bonneville, "The Detection Thresholds of Resonances at 
Low Frequencies", J. Audio Eng. Soc., 45,116-127. 
(1997). 

[24] Olive S.E., "Differences in the Performance and 
Preference of Trained versus Untrained Listeners: A 
Case Study", J. Audio Eng. Soc., vol. 51, No. 9, pp. 806-

[25] Moore, B.C.J., An Introduction to the 
Psychology of Hearing, Academic Press, 4th Edition, 
(1997). 

[26] Blauert J., Spatial Hearing (1997), MIT. 

[27] Allison R.F. and Berkovitz R.,"The Sound Field 
in Home Listening Rooms," J. Audio Eng. Soc., vol. 20, 
pp. 459-469 (1972 July-Aug.). 

[28] Bradley, J.S.,"Acoustical Measurements in 
Some Canadian Home", Canadian Acoustics, vol. 14, 
pp.19-25 (1986 Oct.). 

[29] ITU-R BS.1534-1,“Method for the subjective 
assessment of intermediate quality level of coding 
systems” (2001-2003). 

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31 
Page 21 of 21 




