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The exact theory for the radiation of a small loudspeaker in the surface of a rigid circular disk of 
elliptic profile is presented. Numerical results are included for a monopole at the center of the disk 
and on it• surface. The solution for the loudspeaker in the center of a free circular baffle is then 
formulated by superimposing the solution of a positive source on one side of the baffle with that for 
a negative source on the other side. For wavelengths greater than the circumference of the baffle, the 
resulting field turns out to be very similar to that of a dipole of finite dipole axis. However, for 
wavelengths smaller than the diameter of the baffle, the diffraction field is shown to be dominated 
by edge effects. In particular, the total field may also be represented by a simple ring-point source 
combination, i.e., the edge of the baffle is essentially replaced by a ring source. It is shown that in 
the vicinity of the axis of the baffle, the shape of the frequency response curve depends little on 
how much volume flow is generated on the opposite side of the baffle. In other words, it makes 
little difference (except in. absolute level) whether a loudspeaker is enclosed in a box or is permitted 
to radiate from the rear. 

Subject Classification: 20.15, 20.30, 20.55' 85.60. 

INTRODUCTION 

In this paper the radiation of sound from a loudspeaker 
located in a rigid finite circular baffle is investigated 
analytically. The exact solutions arising from the sepa- 
ration of variables of the Helmholtz equation in oblate 
spheroidal coordinates are used to formulate the bounded 
Green's function solution of a simple source in the pres- 
ence of a rigid oblate spheroid. The oblate spheroid is 
particularly suited to the study of circular disks and pis- 
tons because in one limit these shapes are approached. 
The mathematical developments of oblate spheroidal 
wave functions are relatively well known and may be 
found in Bouwkamp, z Stratton e! al. ,a Leitner and 
Spence, a Meixner and Sch•ifke, 4 or Flaremet, • and ex- 
tensive sets of tables have been compiled by Hanish 
et al. • 

The sound radiation from oblate spheroids has been 
treated analytically by Silbiger, • and the diffraction of 
plane waves by oblate spheroids was investigated inde- 
pendently by Spence, s Leitner, 9 and Wiener. z0 The ra- 
diation field due to a vibrating cap on an oblate spheroid 
was computed by Nimura and Watanabe, n and these re- 
sults were extended to cover wider ranges of baffle size, 
curvature, and frequency by Baier. •2 

Of particular interest in this paper is the diffraction 
field generated by a loudspeaker at the center of a thin 
circular baffle. The results of the bounded Green's 

function solution will be used to formulate the loudspeaker 
solution through use of the superposition principle. The 
field of a positive source on one side of the baffle is com- 
bined with the field of a negative source on the other 
side. The effective sound generator at the center of the 
disk is analogous to a very small rigid piston (a loud- 
speaker) that oscillates with constant velocity amplitude. 
The total field of this situation is computed and compared 
to simple sound radiators, such as the dipole and ring 
source. These comparisons lead to an explanation of the 
puzzling observation that the shape of the frequency re- 

sponse curve along the axis of the loudspeaker in a box 
or baffle is practically independent of what occurs on the 
other side. It makes little difference whether volume 

flow is occurring on one side or on both, i.e., whether 
the loudspeaker is open in the back or is enclosed in a 
box. 

It will be assumed throughout that the observation 
point is far from the baffle and that the harmonic time 
dependence is e '•t where w is the circular frequency. 
The notations used for the spheroidal wave functions fol- 
low those of Flaremet. • The reduced frequencies used 
in the numerical computations are representative of 
wave!engths appro•Amate!y equal to the dimensions of 
the baffle. This range therefore includes the frequencies 
for which diffraction effects first appear. 

I. OBLATE SPHEROIDAL COORDINATES 

The oblate spheroidal coordinates (•, •/, •)) are shown 
in Fig. 1, and are related to the Cartesian coordinates 
(x,y,z) by 

d 

x= • [(1 - •/•')(1 + •')] •/•' cos•) , 

y = •[ (1 - •7•')(1 + f•')] z/•' sin• , (1) 
d 

z = •V• , . 
, 

where d is the interfocal distance of the generating el- 
lipse. The radial coordinate • may range from 0, for an 
infinitely thin circu•lar piston, to •. for a sphere of in- 
finite radius. The diameter of an oblate spheroid • = •0, 
is 

L=d(l•o•+ 1) z/•' , (2) 
and its maximum thickness (at the center) is given by 

z)= oa. (3) 

The coordinate •/is the angle coordinate and ranges 
from -1 to + 1. When equal to + 1, the positive z axis 
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FIG. 1. The oblate spheroidal coordinate system. 

(axis of symmetry) is referred to, and r/= - 1 is the 
negative z axis. For t/= 0, z = 0, and the value represents 
the edge of the disk. The rotational coordinate about the 
z axis is •, and is identical to the spherical coordinate 

In the farfield, • is large and can be related to the 
field radius of spherical coordinates: 

r= •a/2 , • - oo . (4) 

In this limit, •/, which represents the surface of a hyper- 
boloid, is given by 

•= toss, (5) 

where 0 is the angle between the positive z axis and the 
asymptote of the hyperboloid. The angle • is therefore 
analogous to the spherical aspect angle. 

The general modal solution to the wave equation corre- 
sponding to harmonic outgoing waves is given by 

½=. S=.( ih, -"•(a) , = - ',/)z;=, (- ih, i•) cosmqb e 'i• (6) 

where h= wd/2c= kd/2 (c= sound velocity). The spheroi- 
dal angie functions, Stun(- ih, •1), are orthogonal over the 
range of •/and have the normalization integral (norm) 
Nmn(t•. The radial function R(•a2 (-ih, i•) represents a di- 
verging wave and is therefore related to the standing 
wave functions by ' 

'"(•) (i•) . (7) R(•a2 (i•)=/{(22 (i•)+ z•=, 
Here, and in the sequel, the -ih will be dropped from 
the arguments of the spheroidal functions and the har- 
monic time dependence.will be suppressed. Th• reader 
is referred to Flammer s for a very Complete description 
of the oblate spheroidal wave functions. 

II. ANALYSIS 

The problem considered is the general interaction of 
a spherical acoustic wave with a rigid oblate spheroid. 
The incident sound field is expressible in terms of the 
free-space Green's function in oblate spheroidal coordi- 
nates. a,s The incident acoustic pressure at (•, •/, qb) due 

to a simple source at (•', •/', qb') is 

•,(•, •, ½/•,, •,, ½,)= •oc• • •=• s=,(.•)s•(.•,) 
•=0 •=• 

/•' <=> ')•cos• •,)' • < • ' (•)•.(• , 

• •[• (• ,m•=, (•)/• (•) .--•. , •>•', 

where • •s the volume flow o• •he source, • •he w•ve- 
number, p •he fluid m•ss dens•y o• •he medium, •nd (0 
= [, (•= 2(•> 0). •y •ssumin• Lhe diffracted p•essu•e 
•o be • series o• sphe•o•d•[ h•mon•cs •ven by the •o•m 
o•q. 6, •.e., 

•.(•,. •)= • • •..(.•[=• (•) •o•, (•) 
•=0 •=• 

•nd •pp[y•n• •he boundary coniston 

[a(Pi +Pa)] =0, (10) o• •=•0 
where •0 is •he boundary o• •he given spheroidal body, 
resuRs in 

fi fi S•"")S•n("') _ ') •oc• (• • cosm(• P•(•,V•)=- 2• Nmn •0 

Iz• ß (3) ß tq 
-•(" (z•)n=. (z• ,• < •', •.(z),(i•0 ) / --=. , 

ß (22 (i•')R(22 (i•) •(5•,(i•0 ) -•(•) . , (a) ß --•. •.(•)•.. (•, • > •', 
(•) 

where the prime on the radial functions denotes differ- 
entiation with respect to •, and p• = p• +p•. 

III. MONOPOLE AT THE CENTER 

In this section, the special case of a monopole situated 
at the center and on the surface of a thin (L/D>> 1) oblate 
spheroid is consideredß The solution no longer depends 
on qb (axisymmetric), so only the rn= 0 terms need be re- 
tained. Assuming that the sound source is located at •' 
= •0, •/'= - 1, and replacing R (3) (i•) with its asymptotic 
value for •-oo i e. , ß , 

R(•an)(i•)--" (h•)'Zexp[ih•-irr(n + 1)/2] , (12) 

results in the farfield solutionß I• is expedient to nor- 
malize with the sound field generated by the sound source 
in the absence of the baffle, 

ikpcQ ei • Ps=- 4•r ' (13) 

The resulting expression for the normalized pressure 
field is then of the form: 

•_•_ - 2 ' ),,q So,,01)So•(- 1) ps-h(f• + 1) • (- i •r ,:,(•),(ifoY, (14) n=O ' ' On • •'On 

where the Wronskian relation s W[R• ) , R(a)] = 1/[h(•+ 1)] 
was used. From the definition of h and from Eq. 4, we 
let h• = kr in the derivation of Eq. 14. 

Numerical evaluations of the partial wave series of 
Eq. 14 were performed using the IBM 360/67 digital 
computer located on The Pennsylvania State University 
Campus. A value of 0.02 for •0 Was selected to be rep- 
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FIG. 2. Computed directivity curves for a single source at 
the center and on the surface of a rigid oblate spheroidal baf- 
fle (•0=0.02)- The source is situated on the 180 ø axis. (a) 
Patterns for h = 0.1 and 1.0. (b) Patterns for h = 2.0 and 3.0. 
(c) Pattern for h = 5.0. (d) Pattern for h = 6.0. 

resentative of a thin baffle (L/D= 50). The radial func- 
tions required for the computations were taken from the 
tables of Hanish et al., 6 and the angle functions were 
computed from their exact series expansion of Legendre 
polynomials. The expansion coefficients, required for 
the generation of spheroidal functions, were computed 
with the aid of a program developed by Hodge. ts The 
normalization integral was obtained by numerically inte- 
grating the square of the angle function over the range of 

Figures 2 and 3 show the results of these computations 
in the form of directivity curves for several values of 
the reduced frequency h. The largest value of h consid- 
ered was 9.0, for which it was found that the series con- 
verged in approximately ten terms. This observation is 
not surprising because spheroidal radial functions of the 
first kind behave in a manner similar to Bessel functions 

as the degree increases above the value of the argument. 
These curves show the modulus (in decibels) of Eq. 14 
as a function of 0 = cos'• with the monopole location in- 
dicated by the small dot at 0 = 180 ø . 

When h- 1, or more precisely when X > •d (X = acous- 
tic wavelength), the patterns are basically omnidirec- 

tional, i.e., the baffle has little effect on the field of the 
source. As the frequency variable increases, lobes be- 
gin to appear because of the diffraction effects caused by 
the baffle. When h = 3.0, or when the wavelength approx- 
imately equals the diameter of the baffle, a strong min- 
imum occurs near the 30 ø direction. If one looks at the 

diffracted wave in the x-z plane in terms of a ray, it is 
easy to see that in the 30 ø direction, that part of the 
wave leaving the edge at 270 ø lags that contribution from 
the 90 ø edge by the phase angle •. The resultant pres- 
sure, therefore, approaches zero. 

A result which may seem strange at first glance is the 
pattern for h = 6.0, where the wavelength approximately 
equals the radius of the baffle. A minimum occurs along 
the axis of the baffle on the side of the source. The dif- 

fraction wave generated in the plane of the baffle then has 
the same phase as the incident wave at the edges. The 
abrupt change of curvature at the edges (radius of curva- 
ture at the edge equals l•'/4L) and the availability of the 
full space for the outcoming wave then creates a situa- 
tion similar to the propagation of a wave in an open-end 
duct. The wave reflects from the medium at the edges 
in antiphase, rqlative to the source point. The acoustic. 
pressure in the 180 ø direction due to the incident wave 
is proportional to Qe • and that diffracted from the edge 
is proportional to Qe •(•r*'). The resultant of these two 
fields is seen to be very small. 
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FIG. 3. Computed direc- 
tivity curves for a single 
source at the center and 

on the surface of a rigid 
oblate spheroidal baffle 
(•0 =0. 02). The source 
is situated on the 180 ø 

axis. (a) Pattern for h 
= 7.0. (b) Pattern for h 
= 8.0. (e) Pattern for 
h=9.0. 
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FREQUENCY VARIABLE, h=k•-=-•- 
FIG. 4. The on-axis frequency response on the side of the 
baffle in which the single sound source is located (the experi- 
mental curve is due to Wienerlø). 

Note that a strong beam (Poisson spot) occurs at all 
wavelengths along the path opposite the sound source 
(0 = 0 ø ). This result is expected since the phase shift is 
zero between the edges of the disk along this path, and 
constructive interference occurs. 

The farfield pressure ratio in the 180 ø direction is 
presented as a function of h in Fig. 4. Wiener •ø has 
measured the pressure on the surface of a circular disk 
when insonified by a plane wave. The principle of reci- 
procity allows us to interpret those results as the far- 
field pressure due to a sound source on the surface. The 
particular experimental curve of Wiener for axial inci- 
dence and the pressure at the center on the lit side is 
shown along with the computed curve in Fig. 4. The 
agreement is seen to be good with only a slight discrep- 
ancy at the minimum. The peak is seen to occur for h 
= •, or when the wavelength equals the diameter of the 
baffle. The result supports the same arguments pre- 
sented for h= 2•, except that in this case the diffracted 
edge wave is in phase with the incident wave and the two 
combine constructively. 

IV. LOUDSPEAKER AT THE CENTER 

At low frequencies, a loudspeaker may be considered 
as an oscillating piston source. If such a source were 
placed at the center of a thin circular disk, the volume 
flow on the top of the disk would be in antiphase to the 
volume flow on the bottom surface. With this idea in 

mind, we can use the results for the point source at the 
center of an oblate spheroid to formulate an acoustic 
model that represents a small loudspeaker in a free cir- 
cular baffle. The procedure is to superimpose the solu- 
tion of a positive monopole situated at •7= 1 with the solu- 
tion for a monopole of opposite (negative) strength lo- 
cated at •7=- 1. 

Equation 14 represents the solution for a single source 
at •7 = -1. Subtracting the pressure field due to a source 
at •7= 1 from that field due to a source at •7= - 1, and 
noting that 

So.(- 1) - So.(1)= - 2So.(!) , n odd, 

= 0, n even, (15) 
results in 

where the prime on the summation symbol means sum- 
mation over only even or odd terms depending on the 
starting value. The quantity (P/Ds) denotes the total 
pressure field from the double source arrangement nor- 
realized with the sound field of a simple source (Eq. 13) 
in the absence of a baffle. 

The total sound field of the loudspeaker in a thin cir- 
cular baffle (•0 = 0.02) has been computed from Eq. 16 
using the same numerical procedure discussed in Sec. 
III. The results for h-< 3 are shown in Fig. 5. The baf- 
fle generates very much the same patterns as the two 
sources at the specified separation distance. The field 
is basically that of a dipole. Nimura and Watanabe u 
show essentially the same patterns for a finite piston os- 
cillating at the center of an oblate spheroid which sup- 
ports our hypothesis that this model represents a loud- 
speaker at low frequencies. Since the patterns appear 
to be dipole, we may use the results of dipole radiation 
to predict the exact results. In particular, the normal- 
ized amplitude of a dipole is expressible as 

ii {%* ) (h * 0 ) •=2sin --cos0 =2sin •eos , (17) Ps 

where b is the dipole axis. By setting the amplitude of 
the exact computations equal to the amplitude of the 
equivalent dipole at 0 = 0 ø (on-axis) results in the re- 
quired dipole axis as a function of reduced frequency, 
i.e., 
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,/ 1 Iø 
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FIG. 5. Computed direc- 
tivity curves for the dou- 
ble sources (loudspeaker) 
on the surface and at the 

center of a rigid, oblate 
spheroidal baffle (•0 = 0.02). 
(a) Pattern for h = 0.1 and 

the pattern of an equivalent 
dipole. (b) Pattern for h 
= 1.0 and the pattern for an 
equivalent dipole. (c) Pat- 
terns for h = 2.0 and 3.0. 

(c) 
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¾IG, 6, The equiva]ient dipole axis as a function of reduced 
frequency h, for which a dipole may be used to represent the 
field of a loudspeaker in a free circular baffle. 

b/d= sin'Z(] p/p,l/2), 
where l p/p• I is the modulus of the exact result at e = 0 ø. 
In using Eq. 18 it was found that the exact values of the 
pressure ratio fell within a range that makes the aisc sine 
function undefined when 1 <- h <- 3. The conclusion drawn 

from this is that the field for h> 1 cannot be approximated 
by a dipole. 

The variation of b/d with h is shown in Fig. 6, where 
these values, when substituted into Eq. 17 result in the 
broken line patterns of Fig. 5(a) and Fig. 5(b). It is 
seen that b/d approaches a constant as h tends to zero. 
This constant is easily deducible from Eq. 16 if the 
asymptotic values of the spheroidal wave functions for 
small h are used. Silbiger • has presented the appropri- 
ate asymptotic formulas for h-0, and their incorpora- 
tion into Eq. 16 results in 

where only the first two terms of the series were re- 
tained and terms of 0(h 4) and smaller were neglected. 
The angular variation is seen to be cose, which is iden- 
tical to that of a dipole. Using Eq. 19 in Eq. 18 results 
in the asymptotic value of b/d, i.e., 

b/d--.. I •r/•o/2 -/•otan'X(/•O) - 1 a-o •/2 - fo/(f•+ 1) - tan'X(fo) - føl ' (2O) 

It is clearly seen that for /j0 = 0, b/d- 2/•. This limit, 
along with some other points computed from Eq. 20, is 
shown in Fig. 6. The equivalent dipole axis, at low fre- 
quencies, is approximately the diameter of the baffle 
squared divided by half the circumference. 

The directivity functions for h > 3 are shown in Fig. 7. 
Diffraction by the baffle has caused the patterns to devi- 
ate from simple dipole radiation. The on-axis frequen- 
cy response is shown in Fig. 8 along with an experimen- 
tal curve of a loudspeaker in a free-circular baffle mea- 
sured by Buchmann. z4 The similarity of this curve to 
the one for a single source (Fig. 4) is remarkable. The 
extrema occur at the same values of reduced frequency, 
and the overall shape of the frequency curves is near- 
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FIG. 7. Computed directivity curves for the double sources 
(loudspeaker) on the surface and at the center of a rigid oblate 
spheroidal baffle (t0 =0.02). Included with the exact computa- 
tions are the patterns of an equivalent ring-point source com- 
bination. (a) Patterns for h =5.0. (b) Patterns for h=6.0. 
(c) Patterns for h =7.0. (d) Patterns for h = 9.0. 

ly identical. The maximums have occurred at the same 
frequency because when the loudspeaker has a maximum 
on the 7= - 1 side, the contribution from diffraction by 
the baffle is in phase with the direct radiation from the 
point source on that side of the baffle. If the two sources 
that represent the loudspeaker were in phase (doublet), 

i I m m m m . I 

i 

2 4 6 8 IO 

FREQUENCY VARIABLE, h=k2d---=-• 
FIG. 8. The on-axis frequency response of the double sources 
(loudspeaker) in the center of a free circular baffle (the ex- 
perimental curve is due to Buchmannl4). 
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FIG. 9. The on-axis frequency response of the double sources 
(loudspeaker) in the center of a free circular baffle compared 
with the result computed by a ring-poLar source combination. 

then too the diffraction field would be in phase and a 
maximum would occur. Since the single-source solution 
for a thin baffle may be approximated as one half the sum 
of the loudspeaker and doublet solutions, then a corre- 
sponding maximum would occur in its frequency curve. 
Conversely, at the frequency for which the loudspeaker 
solution has a minimum, the diffraction field is 180 ø out 
of phase with the direct radiation, and hence, nearly 
180 ø out of phase with the field of the doublet. Their 
superposition then results in a minimum for the single 
source situation. The result is that the shape of the fre- 
quency response curve depends little on whether there is 
volume flow on only the front, or on both sides of the 
baffle; however, the amount of volume flow does affect 
the absolute pressure levels. Differences of up to 4 dB 
occur throughout the range from h = 1 to h = 9. 

An often-used technique in scattering problems is to 
replace the diffraction field by a simple sound radiator 
whose field corresponds to the given diffraction field. 
This has been performed for the small h region (dipole 
approximation) and can also be performed for larger val- 
ues of h. If edge diffraction is dominant, then the edge 
of the baffle may be replaced by a simple ring source. 
It was argued earlier that the reflection of the incident 
wave from the edge causes a phase shift. An equivalent 
sound radiator might then be the combination of a ring 
source with an out-of-phase simple source located at the 
geometric center of the ring. The field of the simple 
source of strength -Q and phase angle kd/2 is 

ikpcQ i(•,'*•/2) 
Psz- 4• e , (21) 

and the field of a ring source of strength Q and diameter 
d is, viz., Skudrzyk, •s 

P'=- 4• J0 --sin e i•. (22) 
The combination of the two, normalized to ;O s is then 

(P' +Psx) =J0 (h sinS) - e i• , (23) 
where kd/2 was replaced by h. 

The directivity functions, based on Eq. 23, are plotted 
as the broken line curves in Fig. 7. The amplitude was 
shifted by approximately 6 dB, such that the levels are 
equal along the z axis (8 = 0 ø ). The on-axis frequency 

response is shown in Fig. 9 without the 6-dB shift. The 
divergence of the two curves for h > 1 is between 6 and 8 
dB, meaning a factor of 2 or 2.5, respectively. The 
factor 2 is expected since, at higher wavenumbers, the 
wavelength becomes approximately equal to or smaller 
than the diameter of the baffle. The disk then begins to 
approach an infinite baffle, and the sound pressure dou- 
bles in much the same way as it does for a point source 
near an infinite plane. This effect is not seen for the 
ring-source approximation because there is no boundary, 
and the sound sources radiate into spherical space at all 
frequencies. 

V. CONCLUSIONS 

In this paper, the diffraction of sound by a free circu- 
lar disk of elliptic profile with a monopole or group of 
monopoles on its surface was treated analytically with 
the use of spheroidal wave functions. The two specific 
cases considered were (1) a simple monopole on the sur- 
face and located at the center of the disk, and (2) the su- 
perposition of a positive monopole on one side of the disk 
with a negative one located on the other side and both on 
the axis of symmetry. The latter case depicts a model 
of a loudspeaker in the center of a circular baffle. For 
small values of h (h-< 1) the directivity curves of case 
(1) are monopole and those of case (2) are dipole. The 
equivalent dipole axis required to reproduce the exact 
computations was presented. For h > 1, the shapes of 
the on-axis frequency response curves for the two cases 
were found to be nearly identical. The result indicates 
that the shape of the frequency curve depends little on 
whether volume flow is created on only the front side of 
the baffle, or on both sides. The total field in the vicin- 
ity of the axis was then shown to depend primarily on the 
superposition of the incident sound field and a field due 
to edge diffraction. This edge diffraction field was ap- 
proximated by a simple ring source and the comparison 
to the exact solution was favorable. When applicable, 
experimental data from other authors were compared 
with the theoretical computations and agreement was 
found to be good. 

ACKNOWLEDGMENT 

The author wishes to thank Professor Eugen J. Sku- 
drzyk for suggesting this problem, and for his assistance 
in the interpretation of the numerical results. This 
work was supported by the Applied Research Laboratory 
under contract with the Naval Sea Systems Command. 

*This paper draws from a Ph.D. thesis submitted by the author 
to the Graduate Faculty of the Engineering Acoustics program 
at The Pennsylvania State University. This paper was pre- 
sented at the 85th Meeting of the ASA in Boston, MA on 13 
April 1973 [J. Acoust. Soe., Am. 54, 335(A) (1973)]. 

1C. J. Bouwkamp, J. Math. Phys. 26, 79-92 (1947). 
2j. A. Stratton, P. 'M. Morse, L. J. Chu, and R. A. Hunter, 

Elliptic Cylinde• a.d Sphe•idal Wave Fu•ctio. s (Wiley, New 
York, 1941). 

SA. Leitner and R. D. Spence, J. Franklin Inst. 249, 299-321 
(Z950). 

4j. Meixner and F. W. Sch•ike, Mathie•sche F•tio. e• •d 

J. Acoust. Soc. Am., Vol. 57, No. 3, March 1975 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  130.209.6.50 On: Fri, 19 Dec 2014 13:24:50



549 G.C. Lauchle: Radiation of sound from a loudspeaker 549 

$p•roidfur•tio•zen (Springer-Verlag, Berlin, 1954). 
5C. Flammer, Spheroidal Wave Functions (Stanford U. P., 

Stanford, CA, 1957). 
SS. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King, 

"Tables of Radial Spheroidal Wave Functions," NRL Reps. 
7088, 7089, 7091, 7092, and 7093 (June 1970). 

VA. Silbiger, J. Acoust. Soc. Am. 33, 1515-1522 (1961). 
8R. D. 8pence, J. Acoust. Soc. Am. 20, 380-386 (1948). 
SA. Leitner, J. Acoust. Soc. Am. 21, 331-334 (1949). 
tøF. M. Wiener, J. Acoust. Soc. Am-•?2t;•: 334-347 (1949). 

tiT. Nimura and Y. Watanabe, J. Acoust. Soc. Am. 25, 76-80 
(1953). 

12R. V. Baler, J. Acoust. Soc. Am. 51, 1705-1716 (1972). 
t3D. B. Hodge, ''The Calculation of the Spheriodal Wave Equa- 

tion Eigen Values and Eigen Functions," Ohio State U. Electro 
Sci. Lab. Rep. No. 3 (1969). 

I4G. Buchmann, Akust. Z. 1, 169-174 (1936). 
ISE. J. Sk•drzyk, The Foundations of Acoustics: Basic Mathe- 

matics and Basic Acoustics (Springer-Verlag, New York and 
Wien, Austria, 1971). 

J. Acoust. Soc. Am., Vol. 57, No. 3, March 1975 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  130.209.6.50 On: Fri, 19 Dec 2014 13:24:50


