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The propagation of the fundamental, longitudinal acoustic mode in a duct of variable 
cross-section is considered, and the “Webster” wave equations for the sound pressure and 
velocity are used to establish some general properties of the exact acoustic fields. The 
equipartition of kinetic and compression energies is shown (section 2.1) to hold at all 
stations only for (i) a duct of constant cross-section and (ii) an exponential horn; these 
are the two cases for which the wave equations for the acoustic velocity and pressure 
coincide. It is proved (section 2.3) that there are only five duct shapes, forming two dual 
families, which have constant cut-off frequency(ies): namely, (I) the exponential duct, 
which is self-dual, and is the only shape with constant (and coincident) cut-offs both for 
the velocity and pressure; (II) the catenoidal horns, of cross-section S-cash’, sinh’, 
which, with their duals (III) the inverse catenoidal ducts S - sech’, csch2, have one constant 
cut-off frequency, respectively, for the acoustic pressure and velocity. The existence of at 
least one constant cut-off frequency implies that the corresponding wave equation can be 
transformed into one with constant coefficients, and thus the acoustic fields calculated 
exactly in terms of elementary (exponential, circular and hyperbolic) functions; this 
property also applies to the imaginary transformations of the above shapes, viz., the 
sinusoidal S-sin* and inverse sinusoidal S-csc’ ducts, that have no cut-off frequency, 
i.e., are acoustically “transparent”. It is shown that elementary exact solutions of the 
Webster equation exist only (section 3.1) for these seven shapes: namely, the exponential, 
catenoidal, sinusoidal and inverse ducts: it is implied that for all other duct shapes the 
exact acoustic fields involve special functions, in infinite or finite terms, e.g., Bessel and 
Hermite functions respectively for power-law and Gaussian horns. Examples of the method 
of analysis are given by calculating, in elementary form, the exact acoustic fields in inverse 
catenoidal ducts, for all cases of (a) propagating waves above, (b) non-oscillating modes 
below and (c)transition fields at the cut-off frequency. The inverse catenoidal ducts consist 
of (A) the horn of cross-section S- sech’, ressembling the “soliton” of non-linear water 
wave fame, and (B) the baffle of cross-section S - csch*, which also matches two exponen- 
tially converging ducts, but has infinite, instead of finite, flare at the origin. The geometrical 
and acoustic properties of these ducts are illustrated by sets of six plots, in Figure I (a) 
for the sech-horn and in Figure I(b) for the csch-baffle; the exact acoustic fields are 
described by amplitude and phase decompositions of the sound velocity and pressure, 
plotted as functions of position along the duct, for four frequencies ranging from the 
cut-off condition to the ray limit (or W.K.B.J. approximation). 

I. INTRODUCTION 

The consideration of the acoustics of ducts and analogous problems (section 1. I), and 
the indication of the practical applications motivating their study (section 1.2), raises a 
number of general questions (section 1.3), which are the subject of the present paper. 
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The wave equation describing the one-dimensional, longitudinal propagation ot’ sound 

in a duct of variable cross-section (horn) is similar to {hat governing the transversal 
vibrations of a flexible string of non-uniform thickness. The latter was considered tirst 
[I, J. Bernoulli 1753; 2, Euler 1764; 3, D. Bernoulli 1765: 4, Euler 17661 in the context 
of linear elasticity, and the analogy with the acoustics of gases in non-uniform tubes was 
quickly recognized [5, Lagrange 1760; 6, Euler 177 I]. Outstanding features of these early 
researches were the recognition of aerial acoustics as an important branch of fluid 
mechanics [7, Euler 17551, and the successful use of physical acoustics to explain musical 
sound [8, Euler 18181. The detailed evolution of the subject in the XVIIIth century, 
including the early errors and controversies, is an interesting topic of the history of science 
[9, Truesdell 1955; 10, Truesdell 19601. The equation of acoustic horns was rediscovered 
independently much later [I I, Rayleigh 19 16; 12, Webster 19 191, and thus its current 
designation as “Webster’s equation” is misleading as concerns the history of the subject, 
although it was only in this century that the topic has been once more widely and 
intensively researched. 

The literature on this subject is more sparse in the XIXth century, but significant results 
were demonstrated, including the analogy between the two preceding problems and water 
waves in a channel of varying width [ 13, Green 18361 and electric currents in non-uniform 
transmission lines [14, Heaviside 18821. In connexion with the former it was shown that, 
if the channel tapers gradually, the wave amplitude varies with the inverse square root 
of the cross-section (or width, for uniform depth); this result implies neglecting the 
reflections due to the walls [ 15, Rayleigh 1894, see Volume 2 p. 681, and corresponds to 
the modern Wentzel-Kramers-Brillouin-Jeffreys or W.K.B.J. approximation [ 16, Brek- 
hovskikh 19601. The exact solutions for the acoustic fields in ducts were considered in 
detail for the simpler shapes, such as the cone and cylinder [17, Duhamel 1839; 18, 
Pochhammer 18761, which appear to be subjects of almost perennial research [ 19, Barton 
1908; 20, Hoersch 19251. Other analogies, besides the acoustic horn, non-uniform string, 
channel with varying width and non-homogeneous transmission line, include [21, Eisner 
19661 torsional waves in bars, the “water hammer” in hydraulics and the solid horns used 
as displacement amplifiers. 

The rediscovery of the horn equation [ 12, Webster 19191 was followed by considerable 
research concerning the impedance and resonance characteristics of various duct shapes, 
both old and new. For the duct of cross-section S - x” [5, Lagrange 17601, the acoustic 
fields can be expressed exactly in terms of Bessel functions [22, Ballantine 19271, justifying 
the designation “Bessel horns”. These include, for n = 2, the conical horn [23, Stewart 
19201 containing a spherical wave [24, Euler 17591, and for n = 1, the parabolic horn [25, 
Olson and Wolff 19301; the limit n + ~0 leads to the exponential horn [26, Hanna 19271, 
which has been studied for sustained, small-amplitude waves [27, Hanna and Slepian 
19241, and for finite amplitude [28, Goldstein and McLachlan 19341 and transient [29, 
McLachlan and McKay 19361 effects. Other shapes for which exact solutions have been 
obtained include the Gaussian [30, Parodi 19451, hypex [31, Salmon 19461, catenoidal 
[32, Thiessen 19501, tractrix [33, Lambert 19541 and iinusoidal [34, Nagarkar and Finch 
19711 horns. By transformation of these [35, Mawardi 1949; 36, Pinkney and Basso 1963; 
37, Pyle 1965; 38, Molloy 19751 additional exact solutions have been obtained. The 
matching of different ducts [39, Poisson 18171 has also been considered, and is a means 
[40, Olson 1938; 41, Merkulov and Kharitonov 19591 whereby desirable impedance 
characteristics can be obtained over a wider range of frequencies than would be possible 
by using a single, simple shape. 
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1.2. APPLICATIONS TO VOICE, MUSIC AND SOUND 

One of the motivations for the study of the acoustics of horns in this century has been 
the design of loudspeakers in particular [42, Crandall 1927; 43-45, McLachlan 1934, 
1935, 1936; 46, Jordan 19631, and high-quality sound reproduction in general [47, Olson 
and Massa; 48, Olson 1940; 49, Moir 1961; 50, Olson 19721. The use of solid horns as 

displacement amplifiers [51, Eisner 19631 and applications of electromagnetic horns [S2, 
Stevenson 19521 have been additional motivations. Other analogous problems, such as 
the vibrations of tapering bars [53, Bies 19621, the design of ultrasonic concentrators [54, 
Merkulov 19571 and the analysis of non-uniform transmission lines [55, Schwartz 19641, 
have important applications in mechanical and electrical engineering. The realization 
that some horn shapes were discovered empirically before being analyzed theoretically, 
e.g., the sinusoidal duct [34, Nagarkar and Finch 19711 is used in the mouth of the English 
horn, and the Bessel ducts [22, Ballantine 19271 are used, with various exponents, in 
instruments of the brass family [56, Benade 19761, emphasizes the connexion between 
horns and musical acoustics [57, Jeans 1937; 58, Benade 1980; 59, Berg and Storck 19821. 
The acoustics of ducts is also relevant to hearing and speech, e.g., to sound transmission 
in the outer ear and to sound formation in the vocal tract [60, Schroeder 1967; 61, 
Mermelstein 1967; 62, Ishikawa, Matsudaira and Kaneko 1976; 63, Jackson, Butler and 
Pyle 19781. An important generalization of the acoustics of horns is the case of ducts 
carrying a mean flow, which has applications in aircraft nozzles [64, Nayfeh, Kaiser and 
Telionis 19751. 

The basic problem of sound propagation in ducts of variable cross-section, either 
without (horns) or with (nozzles) mean flow, has several ramifications, to which only 
passing reference is appropriate here: (i) the analogy between the acoustics of solid, 
hard-walled frictionless nozzles and abstract “ray tubes” in a free flow [65, 66, Campos 
19781; (ii) alternative derivations of “Webster’s” equation by using variational methods 
[67, Weibel 19551 or a limit to the three-dimensional case [68, Stevenson 19551; (iii) 
three-dimensional solutions [69, Pyle 19671, exact for certain shapes, e.g., the hyperbolic 
horn without [70, Freehafer 19401 and with [7 I, Cho 19801 baffle; (iv) effects of resonances 
and radiative losses [72, Benade and Jansson 1965 ; 73, Jansson and Benade 19651, and 
of evanescent modes and visco-thermal losses at the walls [74,75, Kergomard 1981, 19821: 
(v) generalizations to non-uniform media, either elastic [76, Shaw 19701 or fluid [77, 
Bergmann 19461, including exact solutions in strong stratification [78, 79, Campos 19831; 
(vi) cases of curved ducts [80, Cabelli 19801 and ducts whose walls are elastic [Sl. Sinai 
198 11, have non-uniform impedance [82, Namba and Fukushige 19801 or are lined regularly 
[83, Yoshida 19811 or randomly [84, Howe 19831; (vii) the effect of mean flow in nozzles 
on the generation [85, Morfey 1971; 86, Davies 19811, propagation [87, Perulli 1978: 88, 
Mani 19811 and energy flux [89, 90, Mohring 1971, 19731; (viii) the use of approximate 
solutions, e.g., the W.K.B.J. or ray limit [91, Salmon 19461, conical steps [92, Zamorski 
and Wyrzykowski 19811, perturbation [93, Nayfeh, Kaiser and Telionis 19751 and wave 
envelope [94, Kaiser and Nayfeh 19771 techniques: (ix) comparisons of theory and 
experiment for horns and nozzles [95, Plumblee, Dean, Wynne and Burtin 1973; 96, 
Nayfeh, Kaiser, Marshall and Hurst 1981; 97, Wilcox and Lester 19821; (x) the use of 
numerical [98, Mohring and Raman 1976; 99, Bostrom 19831 and analytic [IOO, 101, 
Campos 19831 methods in the acoustics of non-uniform flows in exhausts and nozzles. 

1.3. PARTITION OF ENERGY AND FILTERING PROPFRTIES 

The basic problem in the acoustics of ducts is to determine the wave fields [ 102, Landau 
and Lifshitz 1953; 103, Morse and Ingard 19681, and from these can be calculated the 
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impedance, and energy densities and fluxes, which are relevant in applications (104, 
Kinsler and Frey 1950; 105, Olson 19671. It is well-known that there is equipartition of 
kinetic and compression energies for a plane wave, corresponding to propagation in a 
duct of constant cross-section; by way of contrast, one should note that for a conical 
horn, corresponding to a spherical wave, there is no equipartition of kinetic and compres- 
sion energies, except asymptotically. The question thus arises of which duct shapes are 
consistent with equipartition of kinetic and compression energies at all positions. It can 
be shown that, besides the uniform duct, only the exponential duct has this property 
(section 2.1); the reason is that, in order for the initial equipartition of energy to hold 
throughout the duct, the acoustic pressure and velocity must evolve in the same way, i.e., 
satisfy identical wave equations, and this is only true for the uniform and exponential 
ducts. This result is obtained in the context of one-dimensional propagation [ 106, Levine 
19781 in ducts of varying cross-section; the validity of the one-dimensional assumption 
has been discussed in detail in the literature (see, e.g., reference [43]), and it is sufficient 
to note that it excludes transversal modes and does not apply to high-frequency waves 
near horn lips, but is adequate to represent the fundamental, longitudinal mode in ducts 
of moderate flare. 

As mentioned, there is only one non-uniform duct which preserves equipartition of 
kinetic and compression energies at all stations, namely, the exponential duct: the latter 
is well-known [107, Lighthill 1978; 108, Dowling and Ffowcs Williams 19831 to have a 
constant cut-off frequency; this cut-off applies both to the acoustic pressure and velocity, 
since they satisfy identical equations in this, and only in this, shape of horn. The catenoidal 
horns, of cross-section S - cosh2, sinh2 are known [3 1,321 to have a constant cut-off for 
the acoustic pressure, and therefore, the “dual” shapes [37], viz., the inverse catenoidal 
ducts S - sech’, csch2, have a constant cut-off for the acoustic velocity. The question of 
whether other duct shapes exist which have a constant cut-off frequency may be answered 
(section 2.3) in the negative. Thus there are only five duct shapes with constant cut-off 
frequencies, namely the exponential, catenoidal and inverse catenoidal. The latter two 
have received less attention in the literature than the former three, and it may be worth 
noting that the inverse catenoidal ducts are (i) the sech2-horn, whose shape coincides 
with that of a “solitary wave” known in the context of non-linear water waves [109, 
Whitham 19741, whereas (ii) the csch2-baffle coincides with the sech2-horn in its asymptotic 
convergence, but contrasts in having an infinitely flaring mouth instead of a finite maximum 
cross-section. A consequence of the existence of a constant cut-off frequency is that the 
acoustic fields can be expressed exactly in terms of elementary (exponential, circular and 
hyperbolic) functions; this property is shared with the sinusoidal S-sin’ and inverse 
sinusoidal S-csc2 ducts, since the latter can be obtained from their catenoidal counter- 
parts [34] by means of an imaginary change of variable, which also eliminates the cut-off 
frequency: i.e., there is no filtering. Thus the exact acoustic fields in ducts of non-uniform 
cross-section can be expressed in terms of elementary functions in the case of seven 
shapes: namely, the exponential, catenoidal, sinusoidal and inverse ducts; furthermore, 
it can be proved (section 3.1) that the preceding list is exhaustive. The implication is that, 
for all other duct shapes, the exact expression of the acoustic fields requires the use 
of special functions, in infinite or finite terms. For example, the acoustic fields in the 
ducts of power-law shape S -x2” can be expressed in terms of Bessel functions of order 
n - l/2 [22], which can be expressed in finite terms in the case when n is an integer 
(spherical Bessel functions), e.g., for the conical horn n = 1; in a somewhat analogous 
manner, the acoustic fields in the Gaussian horn are given by Hermite functions [53], 
which reduce to Hermite polynomials for a discrete set of boundary conditions at the 
ends. 
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With the motivations for the present work thus indicated, the introduction can be 
concluded by outlining the method of analysis which leads to the proof of the general 
properties concerning equipartition of kinetic and compression energies, existence of 
constant cut-off frequencies, and determination of exact elementary solutions. In section 
2.1 the wave equations satisfied by the acoustic pressure and velocity in horns are deduced, 
and it is shown that they are generally different, and only coincide (equipartition of 
kinetic and compression energies) in ducts of varying cross-section for the exponential 
shape; this horn has constant (and coincident) cut-off frequencies for the acoustic pressure 
and velocity, and it is shown that four other shapes exist with one cut-off (section 2.2), 
viz., the catenoidal (cash, sinh)/inverse catenoidal (sech, csch) ducts have a constant 
cut-off (section 2.3), respectively, for the sound pressure/velocity; in section 3 it is shown 
that the exact acoustic fields can be expressed in terms of elementary functions not only 
for these five duct shapes but also for the sinusoidal and inverse sinusoidal ducts (section 
3.1), the resulting list being exhaustive ; as an example, the wave equation for the acoustic 
velocity is transformed into one with constant coefficients and cut-off (section 3.2) in the 
case of the inverse catenoidal ducts, namely (section 3.3) the sech-horn and csch-baffle; 
in section 4, for the latter two shapes, the exact acoustic fields are given, for propagating 
waves above (section 4. l), non-oscillating modes below (section 4.3) and transition fields 
at (section 4.2) the cut-off frequency; the initial conditions specify the pressure and 
velocity, or a derivative of the velocity which is independent of the initial pressure, e.g., 
the dilatation or rate of dilatation; in section 5 the discussion of basic geometrical and 
acoustic properties (section 5.2) is illustrated by dimensionless plots (section 5.1) concern- 
ing the sech-horn (Figure l(a)) and csch-baffle (Figure l(b)); the quantities plotted as 
functions of axial co-ordinate, and interpreted physically are (i) the cross-section, radius 
and length scale, (ii) the amplitude of the acoustic velocity and pressure, with (iii) the 
latter decomposed into primary and secondary sound fields (respectively in- and out-of: 
phase to the velocity), and (iv) the phase difference between pressure and velocity, with 
the waveforms given for four frequencies ranging from the cut-off to the ray limit. 

2. ACOUSTIC PRESSURE AND VELOCITY IN HORNS 

In this section the propagation of the fundamental longitudinal acoustic mode in horns 
is considered, and the acoustic pressure and velocity are compared as regards the wave 
equations (section 2.1) they satisfy, the resulting conditions for wave propagation (section 
2.2), and the duct shapes for which the cut-off frequency is constant (section 2.3). 

2.1. CASES OF EQUIPARTITION OF KINETIC AND COMPRESSION ENERGIES 

The problem to be considered is that of the acoustics of a horn, i.e., a duct of varying 
cross-section, for the fundamental (or lowest order) longitudinal mode. The latter corre- 
sponds to the wave variables being uniform over the cross-section, and depending only 
on the co-ordinate z along the axis and on the time t. The equation of continuity expresses 
the conservation of mass per unit length pS, where p is the mass density and S the 
cross-section (a list of symbols is given in the Appendix), 

a( @/at +a( psu)/az = 0, (la) 

where 21 is the velocity; the equation of momentum is a balance of total (local plus 
convective) acceleration against the gradient of pressure p: 

au/at + u av/az +p-’ aplaz = 0. (lb) 
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The acoustic problem is to be considered under the following conditions: (i) the Hared 
horn has hard, non-distensible walls, so that the cross-section S(z) depends only on the 
axial distance z; (ii) the mean state of the fluid is of rest v0 = 0, with constant density p 
and pressure pO; (iii) for small amplitude waves the equations are linearized in the velocity 
u, pressure p and density p’ perturbations, which depend on space z and time t; (iv) the 
propagation is adiabatic, so that the sound speed c* = (a~,Jap)~ relates pressure p and 
density p’ perturbations and gradients. The linearized continuity (la) and momentum 
(1 b) equations read 

ap/at +(pc’/s) a(su)/az = 0, au/at +p-1 ap/az = 0, Pa, b) 

in terms of the acoustic velocity v and pressure p, with p denoting the constant, mean 
mass density. 

Eliminating between equations (2a, b) gives the wave equations 

sm’a{s(ap/az)}/az - cc2a2p/at2 = 0, @a) 

~S’{a(su)/az}/az - c -‘a2v/at2 = 0, (3b) 

respectively, for the acoustic pressure and velocity. Both wave equations reduce to the 
classical form in the case of a plane wave in a uniform duct, but they are generally 
different in horns (of variable cross-section). The conditions of validity of the one- 
dimensional approximation leading to the wave equations (3a, b) have been discussed in 
the literature [43,64,65]; comparison of the wave equations for the pressure p (3a) and 
velocity o (3b) demonstrates [37] the duality principle, 

St, l/S, P++SV, z=p/sv++sv/p= l/Z, (3c) 

stating that if the cross-section S is inverted to yield the “dual horn” l/S, the pressure 
and the volume velocity SV (equal to the velocity times the cross-section) are interchanged: 
from the first and second transformations in expressions (3~) follows the third, stating 
that dual ducts have inverse impedances: i.e., the impedance of a duct is the admittance 
of its dual. 

Since the horn is assumed to be rigid, the coefficients of the wave equations are time 
independent, and it is convenient to use a Fourier decomposition in time, 

I 

+c( 
u, P(Z, f) = V, P(z; w) emi”” dw, (4a, b) 

W 

where o, p(z, t) are the acoustic velocity and pressure perturbations at position z and time 
t, and V, P(z; w) are the velocity and pressure perturbation spectra at station z for a wave 
of frequency w. In situations where the acoustic fields U, p and their spectra V, P either 
cannot be confused, or have the same properties, one may use simply the brief expression 
(acoustic) pressure, velocity; otherwise the distinction is made. The acoustic fields satisfy 
equations (3a, b), and thus one obtains for their spectra 

P”+(s’/s)P’+(o/c)2P = 0, (5a) 

V+(S’/S)V’+{(w/c)2+(S’/S)‘}V=0, (5b) 

where a prime denotes a derivative with regard to z. The wave equations for the pressure 
(5a) and velocity (5b) coincide only in the case (S’/S)‘=O, i.e., S/S = 1/L= constant, 
corresponding to a horn of exponential cross-section S(z) = S(0) ezlL; this is the only 
case, besides the plane wave in a uniform duct, for which the ratio of pressure to velocity 
is independent of position (P(z; w)/ V( z ; w) = function of w alone), and equipartition of 
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compression and kinetic energies holds throughout the horn. For any horn of non- 
exponential shape the ratio of acoustic pressure to velocity varies along its length, and 
thus the initial equipartition of kinetic and compression energies is generally not preserved 
(an example is given in section 3.3). 

2.2. REDUCED VARIABLES AND ACOUSTIC WAVE INVARIANTS 

In order to obtain the acoustic fields in a horn it is sufficient to solve one of the wave 
equations (5a, b), and then use (as derived from equations (2a, b) and (4a, b)) one of the 
polarization relations 

P(z; o)= -i(pc2/o){S(z)}-’ d{S(z)V(z; w)}/dz, (6a) 

V(z; w) = -(i/pw) dP(z; w)/dz: (6b) 

i.e., one can either (a) solve equation (5a) for the pressure and use equation (6b) to 
determine the velocity, or (b) solve equation (5b) for the velocity and use equation (6a) 
to determine the pressure. This procedure has the advantage that it involves only two 
constants of integration, as appropriate to a second-order problem; if the two wave 
equations (5a, b) were solved, four constants of integration would result, and one of the 
polarization relations (6a, b) would still be needed to express them in terms of two (the 
other polarization relation should then be satisfied identically). Although the wave 
equation for the pressure (5a) appears, on first inspection, simpler than that for the velocity 
(5b), there are instances where the latter proves more amenable to simplification than the 
former (an example is given in section 3.2); thus it is appropriate to proceed by considering 
in parallel the wave equations for the pressure (5a) and velocity (5b), so as to retain the 
option of using whichever is simpler to integrate for a given, particular duct shape. 

In the W.K.B.J. approximation or ray limit, which is valid for high-frequencies over 
short distances, the cross-section tapers slowly on the scale of a wavelength, and the 
amplitude varies like the inverse square root of the cross-section [ 13, 15, 161, this suggests 
the change of variable 

P, V(z; o)={S(z)]P2{Q, W(z; w)), (7a, b) 

so that the reduced pressure Q and velocity W, unlike the acoustic pressure P and velocity 
V, have a constant amplitude initially, in the high-frequency limit. The change of variable 
(7a, b) is precisely that needed to omit the term involving the first derivative [ 110, Forsyth 
19291 in the linear, second-order differential equations, transforming them to the 
“Schrodinger” equation [30,36], or standard, form, 

Q” + J,Q = 0, w”+J,W=O, (Xa. b) 

where the wave invariants for the pressure Jp and velocity J, are given respectively by 

JP=~2/~2-(l/2)(S’r/S)+(1/4)(S’/S)2, (c)a) 

J~=o~/c~+(~/~)(S”/S)-(~/~)(S’/S)~; (9b) 

these reduce to a positive constant Jp, J, - k2, namely, the square of the wavenumber 
k = w/c, in the W.K.B.J. limit, confirming that, in the latter case, the reduced pressure Q 
(8a) and velocity W (8b), have constant amplitudes. 

The wave invariants generally involve the cross-section S(z) and its first two derivatives 
S’, S”, whereas if one introduces the length scale L of cross-sectional variation, defined by 

L = S/S’ = {d(log S)/dz}-‘, S( 2) = exp { [&)I-’ di), (1% b) 
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only the first derivatives appear in 

Jp, J,=w2/c’-(1~2L’)/(4L’). (1 la, b) 

The interpretation of the wave invariants follows from expressions (8a, b), since (a) if 
they are negative, J,,, J, < 0, only non-oscillating modes exist, (b) if they are positive, 
Jp, J, > 0, wave propagation is possible. Thus the separation (c) of the two cases (a) and 
(b), namely, the vanishing of the wave invariants, J,, Jp = 0, specifies via equations (11 a, b) 
the cut-off frequencies w,, w,,, respectively, for the acoustic velocity and pressure, 

W”, wp = (c/2L){ 1 k2L’}“?, (12a, b) 

separating the non-oscillating (below) and propagating (above) regions of the spectrum. 
The cut-off frequencies specify the properties of the horn as a high-pass filter of the 
acoustic velocity w, (12a) and pressure wP (12b). 

2.3. HORNS AND BAFFLES WITH CONSTANT CUT-OFF FREQUENCY 

From equations (12a, b) it is clear that the cut-off frequencies for the acoustic pressure 
and velocity coincide wP = w, only in the case of constant length scale L’= 0: i.e., for the 
exponential horn, 

WP = w, = c/2L, S(z) = S(0) ez’L, (13a, b) 

which has globally constant cut-offs. There may exist other horn shapes for which one 
of the cut-off frequencies w,, wP is a constant; in this case they can be written in the form 

WV, WP = c/21, I= L{l k2L’}_“2, (14a, b) 

where 1 is a parameter with the dimensions of a length. It coincides with the length scale 
of cross-sectional variation I = L only for the exponential horn L’ = 0, which has constant 
and equal cut-offs for the velocity and pressure; a non-exponential horn, with a constant 
cut-off for the velocity/pressure, must have a non-uniform length scale L(z) such that 
expression (14b) with, respectively, the +/ - sign reduces to a constant 1. 

The horns with a constant cut-off frequency w = c/21 for the pressure/velocity, have 
cross-sections S(z) satisfying the second-order, non-linear differential equations 

2SS”- S2 - s2/ I2 = 0, 2SS” - 3 St2 + s2/ I2 = 0, (lSa, b) 

obtained, respectively, by setting Jp, J, = 0 in equations (9a, b). If instead of the cross- 
section S(z) one uses the inverse of the length scale L(z) defined by equation (lOa), then 
equations (1 Sa, b) reduce to non-linear first-order equations, 

2(l/L)‘*(l/L)2=*(l/z)2, (16a, b) 

where the upper/lower signs correspond to the cases of constant cut-off for the press- 
ure/velocity, respectively. These equations could have been obtained from equations 
(14a, b), and are readily integrable; each has two solutions, 

L(z) = it;;; (z/W, --I coth 
tanh (z/21), (1% b) 

for the length scale L(z), which is positive/negative for the horns of constant cut-off 
respectively for the pressure/velocity. Substitution of equations (16a, b) in equation (lob) 
yields the cross-sections 

S(z) = &I ;;;;I (z/W, so sech2 
csch2 (z/21), (1% b) 
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showing, in agreement with equations (l7a, b), that the ducts with constant pressure/veloc- 
ity cut-off are, respectively, divergent/convergent away from the origin. 

Thus one can make the following exhaustive listing of the horns with a constant cut-off 
frequency: (i) the only case of constant (and coincident) cut-off frequencies for both the 
acoustic pressure and velocity is the well-known exponential horn (13a, b); (ii) if only 
the cut-off for the pressure wP (12b) is required to be constant (14a), then, besides the 
exponential horn, the catenoidal horns, of cross-section coshl, sinh’ (18a), also have this 
property; (iii) if only the cut-off frequency for the velocity w, (12a) is required to be 
constant (14a), then, besides the exponential horn, the inverse catenoidal ducts, of 
cross-sections sech2, csch’ (18b) also have this property. These five cases include two 
examples of dual horns [37, Pyle 19631, of (3~) inverse cross-sections S++ l/S, and 
exchange of acoustic pressure p and volume velocity Sv: (a) the exponential horn is its 
own dual, and corresponds to the only case of two cut-offs, coincident for velocity and 
pressure: (b) the catenoidal S - cosh2, sinh’ and inverse catenoidal l/S - sech’, csch’ 
ducts ak duals, so that the constant cut-off for the acoustic pressure in the former [ 3 I, 
Salmon I9461 implies a constant cut-off for the velocity in the latter. It will be noted that 
all the four ducts with one constant cut-off are connexions of (I) exponential horns, which 
is the only case of two constant (and coincident) cut-offs: (A) the horns with constant 
pressure cut-off (18a) have a catenoidal profile (radius R - cash, sinh if they are axisym- 
metric), and match two exponential diverging horns S(z) - (S,,/4) e”’ for /z/ >> I, through, 
respectively, (II) smooth and non-zero S(z)-&(I -~‘/41’) and (III) cusped and zero 
S(Z) - S,,(z’/21*) sections for z’<c I’; (B) the cases of constant velocity cut-off (I 8b) 
correspond to the matching of exponential converging horns S(z) - 4S, e ’ ’ for / zi >> I, 
through, respectively, (IV) a smooth, finite section S( :) - S,( 1 + z2/41”) for Z’C~ I’ for the 
horn of sech” cross-section (and sech radius), and (V) an infinite flare S( z I - S,,(d,l’.’ -_‘) at 
z = 0 for the baffle of csch2 cross-section (or csch radius). 

3. EXACT CALCULATION OF ACOUSTIC FIELDS 

From the preceding analysis it follows that, whereas for the exponential horn it is 
immaterial which of the two wave equations is used, for the calculation of the acoustic 
fields in the catenoidal/inverse catenoidal ducts it is more convenient to start from the 
wave equation respectively for the pressure/velocity, since only this choice leads to the 
constant cut-off frequency. The existence of a constant cut-off frequency implies that the 
acoustic fields can be expressed exactly in terms of elementary functions for the exponen- 
tial, catenoidal and inverse catenoidal ducts, and also for their imaginary transforms, 
viz., the sinusoidal and inverse sinusoidal ducts (section 3.1). After using the present 
theory to prove that this list of seven elementary exact solutions of Webster equation is 
exhaustive, the method can be illustrated in more detail in connexion with the inverse 
catenoidal ducts, namely the sech-horn and csch-baffle (sections 3.2 and 3.3). 

3.1. EXISTENCE OF ELEMENTARY EXACT SOL.UTlONS 

By substituting expressions (12a, b) in equations ( I la, b) the wave invariants can be 
written in the forms 

J, = (w’-wf)/c’, J, =(&w;)/c7, (19a, b) 

confirming that they are positive above the cut-off and negative below, corresponding, 
from equations (8a, b) in the forms 

Q”+{(w’ - w;)/c’}Q = 0, w’,+{(w’- w ,:,/ cZ} w = 0, (20a. b) 
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respectively, to propagating w > o,, up and non-oscillating u < u,., w,, waves. In the case 
of constant cut-off frequency (14a), the wave equations for the reduced pressure Q and 
velocity W take the same simple form 

d2{Q, W(z; w))ld(z/2Q2+~{Q, W(z; w)]=O, (21a, b) 

with a constant, dimensionless coefficient, 

(Y~4w212~c2-1=w2/w:,-1, w=/w:,- I, (22a, b) 

replacing the wave invariants. Equation (21a) is typical of filtering processes, since LY > 0 
for propagating waves, (Y < 0 for non-oscillating modes and cy = 0 at the cut-off, and in 
all three cases the solution is elementary. 

If one performs the imaginary transformation z + iz (or I+ -il), the catenoidal (18a) 
and inverse (18b) ducts transform to the sinusoidal and inverse sinusoidal shapes, 

S(z) = s, sin2 (z/21), S, ;I;: (z/21), 
cos2 

(2% b) 

where S, represents, respectively, the maximum/minimum cross-section (the cases 
cos*, set* can be omitted since they represent the same shape with a translation rrrl). The 
length scales (10a) corresponding to expressions (23a, b). 

L(z) = - / cot 
+ltan (z/21), ;:z (z/21), (2% b) 

lead (compare with expressions (17a, b)) to wave invariants (1 la, b) which are always 
positive, 

JP = (w’ +wf)/c2, J, = (w2 +w;)/c’, (2% b) 

in agreement with the imaginary transformation I + -il, o,,+ + -iwp,uoi,, + -w;.~ applied 
to equations (19a, b). It follows that the reduced pressure Q and velocity W from equations 
(8a, b), in the form 

d*IQ, W(z; Wd(z/2Q2 +P{O, W(z; ~1) = 0, 

always propagate, since the constant parameter 

(2% b) 

p = 1 +40=1=/c= = W2 +w;>, W2 +w;, (27a, b) 

is positive for all frequencies. The wave fields are also specified by elementary functions, 
but there is no cut-off frequency, and the sinusoidal [34, Nagarkar and Finch 19711 and 
inverse sinusoidal ducts are “acoustically transparent”. 

The catenoidal and sinusoidal ducts, and their duals, share with the exponential horn 
the property that the acoustic equation can be solved exactly in terms of elementary 
(exponential, sinusoidal and hyperbolic) functions. This can be the case only if the wave 
invariants J,, J, in expressions (8a, b) reduce to constants; the preceding cases have 
included all possible real values (9a, b) of J,, J,, namely, positive (19a, b) and (25a, b), 
negative and zero (19a, b), and thus the listing of elementary exact solutions of the horn 
equations is complete. Thus there are seven duct shapes for which the exact acoustic 
fields can be expressed in terms of elementary functions: (I) the exponential duct, which 
has two coincident cut-offs; (II, III) the catenoidal ducts which have a constant cut-off 
for the acoustic pressure (18a); (IV, V) the inverse catenoidal ducts, which have a constant 
cut-off for the velocity (18b); (VI, VII) the sinusoidal and inverse sinusoidal ducts, which 
have no cut-off, i.e., are acoustically “transparent” for the pressure/velocity, respectively. 
The two named last also satisfy the duality principle (3c), and in all seven cases the 
existence of elementary exact solutions is connected with the constant, global cut-off, 
and its imaginary transform. 
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3.2. GENERAL AND PARTICULAR METHODS OF TRANSFORMATION 

The result that the exact acoustic fields in ducts can be expressed in terms of elementary 
functions only for shapes which are given by elementary functions appears self-evident. 
Its proof followed simply as a natural consequence of the method of analysis of the horn 
equations, by using the wave invariants (18a, b) and (9a, b). It may be worthwhile, as a 
comparison, to derive the elementary solution directly from the horn equations, to show 
that the process is rather less obvious, even with the benefit of hindsight. One can choose 
as examples the inverse catenoidal ducts, of cross-section (18b) 

S(z) = So sech” (z/21), S, csch’ (z,‘21), (28a, b) 

where So= S(0) denotes the initial cross-section for the sech-horn (28a), and for the 
csch-baffle (28b), which has infinite area at the origin S + 00 as z + 0, the constant S,, = S( z,,) 
denotes the area at the station z0 = 21 sinh- ’ (1) = 1.761. The length scales (lOa) correspond- 
ing (17b) to the cross-sections (28a, b) are given by 

L(z)= -I coth (z/21), -I tanh (z/21), (‘9a, b) 

and have the following properties: (i) they are both negative at all stations Z, since the 
cross-section decreases monotonically with the longitudinal co-ordinate z, and tend 
asymptotically to a constant value (L --f -I as z-+ CO), since then the inverse catenoidal 
ducts reduce to convergent exponential horns, viz. S(Z)-4S, ee”’ for z’ >> 1’; (ii) the 
absolute value of the length scale increases from the asymptotic value IL(z)/ > 1 for the 
sech-horn, and decreases IL(z)1 < 1 for the csch-baffle, since the former “flares-in” to a 
constant cross-section at the origin S(z) - S,( 1 -- z’/41’) for z’<< I*, whereas the latter 
“flares out” in the line z = 0 according to the law S(Z) - S,,(21/~)~ for z2<< I’. 

The wave equations for the acoustic pressure (5a) and velocity (5b) are conveniently 
written by using the lengthscale L (lOa) in the coefficients: 

P”+(l/L)P’+(w/c)2P=o, (30a) 

v”+(l/L)V’+((w/C)*+(l/L)‘}V==0. (Mb) 

In order to calculate the acoustic fields in the sech-horn (28a) and csch-baffle (28b) it is 
preferable to start from the equation for the acoustic velocity (30b), which should lead 
to a constant cut-off frequency for these shapes; equation (30a), which on first inspection 
appears simpler, would be less useful in attempting to derive the elementary solutions. 
One can introduce the dimensionless longitudinal co-ordinate 

x = z/21, F(x)= V(:; w), (3la, b) 

so that F(x), which is the acoustic velocity perturbation spectrum in terms of x, satisfies 

(30b) 

(32a, b) 

where a prime denotes a derivative with regard to x, the constant factor (Y depends (22b) 
on the ratio of the wave frequency w to the cut-off frequency wv, and the upper/lower 
coefficient corresponds, respectively, to the sech-horn (28a)/csch-baffle (28b). 

The property of the sech-horn and csch-baffle, of having a constant cut-off frequency 
for the acoustic velocity, implies that it should be possible to transform the differential 
equation (32a, b) for the acoustic velocity perturbation spectrum into the standard type 

G”+cuG=O, (33) 
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where (Y depends only on frequency w, and vanishes at the cut-off LY(W, ) = O, in agreement 
with equation (22b). According to equation (7b), the transformation is effected by multiply- 
ing by the square root of the cross-section (28a, b) with (3 1 a), viz., W’S - sech, csch (.u). 
leading to the differential equation 

(E:~~~)~.l-2(::fh”:~~:,“:)F.i(::~~(:~~~~~i~~~~~:)F=O, (34a, b) 

whose first two terms appear on the right-hand side of the identity 

{(~~~~:)~)“=(E~~~~)~;~-2(:~:,“:~~:)F.+(~~~~~::~~f~:~~~:)E 

(35a, b) 

Subtracting equations (34a, b) from equations (35a, b) one obtains, after some simplifi- 
cation, 

(36a, b) 

which is of the predicted form (33). 

3.3. EFFECTIVE WAVENUMBER FOR UNIDIRECTIONAL PROPAGATION 

The transformation of the wave equation for the acoustic velocity perturbation spectrum 
(32a, b) to the type (33) corresponds to the choice of variable 

2; w) = W(z; w), (37a, ‘0) 

where G(x) is the reduced velocity W(z; w), defined by expression (7b) with the cross- 
section S - sech x, csch x (28a, b), and x = z/21 (3 I a); the latter change of variable proves 
the coincidence of expressions (33) and (21b). Note that the genera1 method used to 
deduce expression (21a) applies to arbitrary horn shapes, and allows the prediction of 
which types have elementary exact solutions, and is clearer than the direct deduction 
((31)-(37a, b)), which applies only to the inverse catenoidal ducts, and rests on the 
foreknowledge of their constant cut-off properties. The genera1 equation (21a), or its 
verification for the inverse catenoidal ducts (37a, b), has the solutions: 

i 

A eiYr + B eml~~ ifa>O 

W(z;w)=G(x)= Ax+B 1 
(38a) 

ifa=O , 

Acosh(yx)+Esinh(yx) ifa<O i 

(38b) 

(38~) 

where y denotes the square root of the modulus of expression (22b), viz. y = Ial”2, and 
one has, in agreement with section 3.1, (a) propagating waves (Y > 0 above the cut-off 
w > w,, (c) non-oscillating modes (Y < 0 below the cut-off w < w,, and (b) transition fields 
a = 0 at the cut-off w = w,,. 

Considering frequencies above the cut-off w > w,,, for which propagation is possible, 
one has, from expression (22b), 

y=&=21K, K - (o/c)\1 -wf./w2~“‘, (3% b) 

where K is the effective wavenumber, since it (i) simplifies to the ordinary wavenumber 
K = w/c for frequencies much higher than the cut-off w2 >> ot, (ii) is smaller than W/C > K 
for intermediate frequencies w > w”, and (iii) vanishes at the cut-off (K = 0 for w = w,) 
when propagation becomes impossible. It is clear that the first/second terms of expression 
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(38a) correspond (e*‘” = e*iKz ) to a wave propagating in the direction of increasing/de- 
creasing z, and, using expressions (38a) and (3 1 a, b), one obtains the velocity perturbation 
spectrum 

V*(z; w) = v, ~~~~ (z/21) e*iKz, 

where (i) the upper/lower signs correspond to propagation in the directions of respectively 
increasing/decreasing z, (ii) the upper/lower coefficient corresponds respectively to the 
sech-hom/csch-baffle. The acoustic pressure perturbation spectrum, 

follows from the substitution of expressions (28a, b) and (40a, b) into equation (6a). 
From expressions (40a, b) and (41a, b) follows that the kinetic and compression energies 

(per unit volume), 

(42a) E,=;plV(z;w)(*=fpV; 

E, =tlP(z; ~)I*/Pc~ =f& (42b) 

are generally not equal, the reason being that the acoustic velocity and pressure satisfy 
distinct wave equation (5a, b), and thus evolve differently along the duct ((40a, b) and 
(41a, b)) violating the equipartition of energy; the latter only holds E, = Ep (42a, b) in the 
W.K.B.J. approximation, for frequencies much higher than the cut-off (w,/w)‘+O, for 
which (KC/w)*+ 1 by expression (39b). Inserting the factor e-‘” (4a, b) in expressions 
(40a, b) and (41a, b) gives the exact acoustic velocity and pressure perturbations for 
acoustic waves of frequency w in the sech-horn (upper coefficient)/csch-baffle .(lower 
coefficient) as 

V*(z, f)= vcl sinh 
cash (z/21) cos (Kz f of), (43a, b) 

P*(z, t) = rpcv, - “,’ 1;;; (z/21) cos(Kz+wt)-- “,” :zh (z/21) sin (Kzktwt , (4% b) 

propagating in the direction of decreasing (upper sign)/increasing (lower sign) z. 

4. WAVE FIELDS IN THE SECH-HORN AND CSCH-BAFFLE 

The solution of the acoustic equations for the inverse catenoidal ducts (section 3.2) 
can be used to list the velocity and pressure perturbations in the cases of propagating 
waves above the cut-off (section 4.1), non-oscillating modes below the cut-off (section 
4.3), and the transition fields between them at the cut-off frequency (section 4.2): given 
(a) the initial pressure and velocity for the sech-horn, or (b) the initial pressure and a 
suitable derivative of the velocity for the csch-baffle. 

4.1. PROPAGATING WAVES ABOVE THE CUT-OFF FREQUENCY 

The general solution for the velocity perturbation spectrum (3 lb) and (37b) of propagat- 
ing waves (38a), above the cut-off frequency (39a, b), is a superposition of the waves 
propagating in opposite directions (40a), 

V(z; OJ > w,) = cash (z/21)(A eiKz + B epiKr), (4W 
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where A, B are constants of integration, and the sech-horn (28a) has been considered, 
the corresponding pressure perturbation spectrum (6a) being 

P(z; w>~,)=pc(cK/w) cash (z/21)(A elKZ-- Bem’K’) 

+ipc(o,/w) sinh (z/21)(A eiKZ + B e-m’Kz). (4%) 

The constants of integration A, B, specify through A, B cash (z/21) the amplitudes of the 
velocity components propagating in the positive/negative directions, and are determined 
from two compatible initial, boundary or radiation conditions, e.g.: (i) in section 3.3 the 
radiation condition and initial velocity were used to set A = V, and B = 0 in expressions 
(40a) and (4la), selecting propagation in one direction only, along an infinite duct; (ii) 
in general one has to consider the superposition of waves propagating in opposite 
directions (45a, b), with amplitudes determined from the velocity V, pressure P or 
impedance 2 = P/ VS at two sections z = z, and z = z 2, e.g., in the case of the finite duct 
z, =G zs z,; (iii) as another example one can specify the initial velocity and pressure 
perturbation spectra, 

V,= V(O;w>w,)=A+B, P,~P(z;w>w,)=pc(Kc/w)(A-B), (46a,b) 

showing that one has direct A # 0 and reflected B # 0 waves in an infinite duct if the 
initial disturbance is an arbitrary combination of velocity and pressure PO # pc(cK/w) V,,. 
Thus one obtains, from expressions (45a, b) and (46a, b), 

u(z, t) = cash (z/2aX V, cos Kz cos wt + (P,,/pc)(w/ Kc) sin Kz sin wt}, (47a) 

p(z, t) = P,{cosh (z/21) cos Kz -(q/Kc) sinh (z/21) sin Kz} cos wt 

+pcVo{(w,/w) sinh (z/21) cos Kz +(Kc/w) cash (z/21) sin Kz} sin ot, (4-I 

for the velocity and pressure perturbations of a wave of frequency w > o, = c/21 propagat- 
ing in the sech-horn (28a), with the initial conditions (46a, b). 

In the case of the csch-baffle (28b), one has the general propagating velocity and 
pressure perturbation spectra 

V(z; w > 0,) = sinh (z/21)(A eiKz + B eeiKz), (484 

P(z; w > o,) = pc(Kc/w) sinh (z/21)(A eiKz - B eeiK’) 

+ ipc(wU/w) cash (z/21)(A eiKz + B eMiK’). (48bJ 

When specifying the initial conditions it should be noted that the velocity vanishes 
V(0; w > 0,) = 0 because of the infinite flare S(0) = co of the csch-baffle (28b) at z = 0. 

Thus one can specify the initial pressure and the second derivative of velocity (or rate of 
dilatation d2 V/dz*), 

V,“={d’V(z; o>w,)/dz*},=,=iK(A-B)I, (4%) 

P,,= P(0; w > w,) = ipc(w,Lo)(A +B), (49b) 

to determine the constants A, B in expressions (48, b), and obtain 

v(z, t) =sinh (z/21){( V,“/K) sin Kz cos or-(P,,/pc)(o/o,) cos Kz sin wt}, (5Oa) 

p(z, t) = P,,{cosh (z-21) cos Kz +(Kc/w,) sinh (z/21) sin Kz} cos wt 

-pc’( V[l/w){sinh (z/2l)cos Kz - (w,/Kc) cash (z/21) sin Kz} sin or, (50b) 

respectively, for the velocity and pressure perturbations of propagating waves of frequency 
w > CV, = c/21 in the csch-baffle (28b) with initial conditions (49a, b). 
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4.2. TRANSITION FIELDS AT THE CUT-OFF CONDITION 

At the cut-off frequency w = w, the effective wavenumber vanishes K = 0 (39b), and 
the two constants of integration A, I3 in expressions (45a) and (48a) reduce to one A + B, 
so that one must use the solution (38b) instead of (38a). For the sech-horn (28a) one 
obtains the velocity (31b) and (37a) and pressure (6a) perturbation spectra 

V(z; w,) = cash (z/21)(Az/21+ B), (51a) 

P(z; w,) = -&{A cash (z/21) - (B +Az/21) sinh (z/21)}, (SIbI 

at the cut-off frequency w, = c/21. The constants of integration are determined from the 
initial velocity and pressure, 

V,= V(0; w,) = B, PO = P(0; w,) = -ipcA, (52a, b) 
and lead to 

u(z, t) = cash (z/21){ V,cos (ct/21) +(P,,/pc)(z/21) sin (ct/21)}, (53a) 

p(z, t) = P,,{cosh (z/21)-(2/21) sinh (z/21)} cos (c1/21)-pcV,sinh (z/2l)sin (d/21), 

(53b) 

respectively, for the velocity and pressure perturbations of transition waves at the cut-off 
frequency w = w, = c/21 in the sech-horn (28a) with initial conditions (51a, b). 

In the case of the csch-baffle (28b) the transition velocity and pressure perturbation 
spectra are given by 

V(z; w,) = sinh (z/2l){A(z/21) + B}, (54a) 

P(z; 0,) = -ipc{A sinh (z/21) - (AZ/~/ +B) cash (z/21)}, (54b) 

at the cut-off frequency w, = c/21. When determining the constants A, B from the initial 
conditions it should be borne in mind that, as a consequence of the infinite flare S(0) = ix‘ 
of the csch-baffle at z =0 (i) the initial velocity is zero V(0; w,) = 0, and determines 
nothing, (ii) the first derivative of the velocity (or dilatation) V;={dV(z; w,)/dz}, _. is 
redundant with the initial pressure P,= P(0; w,), as can be seen from PO = -i(pc”/w)VI 
in expression (6a), or from the fact that both would determine the constant B through 
P. = ipcB and Vl, = B/21, so that they cannot be chosen independently, and (iii) the second 
derivative of the velocity or rate of dilatation Vi can be chosen independently of the 
pressure PO, since it specifies the “other” constant of integration A through 

V; = {d’V(z; W,)/dz2},=,, = A/21’, PO = P(0; w,) = ipcB. i55a, bl 

Substituting for A, B from expressions (55a, b) in expressions (54a, b) yields: 

u(z, t)=sinh(z/21){lVlz cos(ct/21)-(P,,/pc) sin (d/21)}, 

p(z, t) = PO cash (z/21) cos (ct/21) 

(56a) 

-2pcI’V,“{sinh (z/21)-(2/21) cash (z/21)} sin (cr/21), (56b) 

respectively, for velocity and pressure perturbations of transition waves at the cut-off 
frequency w, = c/21 in the csch-baffle (28b) with initial conditions (55a, b). 

4.3. NON-OSCILLATING MODES BELOW THE CUT-OFF 

Below the cut-off one should use the solution (38c), where y = J~cI[, 

y=~l-(o/o,)‘~“2=/1 -4wY/c2J”2, (57a, b) 

where CY is given by equation (22b) both for the sech-horn (28a) and csch-baffle (28b). 
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The velocity (3la, b) and (37a, b) and pressure (6a) perturbation spectra are given by 

below the cut-off. The wave fields simplify at the cut-off because y = 0 at w = o, (57a, b), 
although in this case only one constant remains, so that the solution must be replaced 
by that given in section 4.2. The wave fields (58a, b) below the cut-off are not evanescent, 
since the exponential decrease in cross-section S(z) for z + 00 in (28a, b) causes the wave 
amplitude to grow, having the factor S-“2 of propagating waves (45) and (48a, b) 
multiplied by another smaller factor cash, sinh (yx) < cash, sinh (x) since y < 1. The 
distinction is that the wave fields below the cut-off (58a, b) are non-oscillating in space, 
whereas above the cut-off (45a, b) and (48a, b) there are nodes at half-wavelength interval 
A = A /2 = r/K. The spacing between the nodes tends to infinity A + CO as the cut-off 
condition is approached, w -+ o,, and propagation becomes impossible, K + 0. 

In the case of the sech-horn, which corresponds to the upper coefficients in equation 
(58a, b), the constants A, B are determined from the initial velocity and pressure perturba- 
tion spectra (as in expressions (45a, b)): 

V,= V(O;w<o,)=A, PO= P(0; w < w,) = -ipc(w,/w) yB, (5% b) 

leading to the expressions, 

u(z, t) = cash (z/21){ V, cash (yz/21) cos (wt) 

+ y-‘(P,,/pc)(o/w,J sinh (yz/21) sin (wt)}, (6Oa) 

p(z, t) = P,{cosh (z/21) cash (yz/21)- y-’ sinh (z/21) sinh (yz/21)} cos (wt) 

+pcVo(o,/w){y cash (z/21) sinh (yz/21) 

-sinh (z/21) cash (yz/21)} sin (wt), (60b) 

for the velocity and pressure perturbations of non-oscillating waves of frequency w < w,, = 
c/21 in the sech-horn (28a) with initial conditions (59a, b). 

In the case of the csch-baffle (28b) the infinite flare S(O)=co at z =0 implies (as in 
section 4.2) that the velocity vanishes, the first derivative or dilatation is determined by 
the pressure, and thus only the second derivative of the velocity, or rate of dilatation, 
can be specified independently of the pressure (as in expressions (55a, b)), 

V; = {d2 V (z; o < w,)/dz’},,,, = yB/212, P,,= P(0; w < w,) = ipc(w,/w)A, (6la, b) 

where expressions (57a, b) have been used, with the lower coefficients. Thus one obtains 

v(z, t) ={(21Vi/y) sinh (yz/21) cos (or) 

-(P,,/pc)(w/w,) cash (yz/21) sin (wt)} sinh (z/21), (62a) 

p(z, t) = P,{cosh (z/21) cash (yz/21) - y sinh (z/21) sinh (yz/21)} cos (wt) 

-212V,“pc(w,/o){sinh (z/21) cash (yz/21) 

-y-l cash (z/21) sinh (yz/21)} sin (or), (62b) 
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for the velocity and pressure perturbations of non-oscillating modes of frequency w < w,. = 
c/21 in the csch-baffle (28b) with initial conditions (hla, b). 

5. DISCUSSION 

Dimensionless representations of the frequency and wavenumber (section 5.1) and of 
the geometrical and acoustic properties of ducts (section 5.2) are introduced, before 
interpreting (section 5.3) the plots of the sound fields in the sech-horn (Figure l(a)) and 
in the csch-baffle (Figure l(b)). 

5.1. IMPEDANCE AND DIMENSIONLESS I-REQI:tNC‘Y AND WAVENUMBER 

From the point of view of the design of acoustic devices, viz., horn engineering [41-501, 
the assessment of the performance of the sech-horn and csch-baffle can be performed by 
methods similar to those described extensively in the literature about other shapes [22-27, 
30-371, taking as starting point the impedance, which is given, from expressions (40a, b) 
and (41a, b), as 

*(Kr/w)~~~~~(z/Zi)-(i/Z)(w,/w)sinh (z/l)}. (63) 

where (i) the upper/lower sign corresponds to propagation in the positive/negative 
z-direction, respectively, (ii) the upper-lower coefficients apply, respectively, to the sech- 
horn (28a)/csch-baffle (28b). A detailed discussion of the potential uses of these horn 
and baffle shapes is beyond the scope of the present work, and therefore only a brief 
illustration, in Figures l(a) and (b), of the physical properties of sound in ducts of 
non-uniform cross-section, in connexion with these two shapes and a variety of frequen- 
cies, is given here. 

The acoustics of the sech-horn and csch-baffle is specified by a single dimensionless 
parameter, namely, the ratio of the wave frequency 11) to the cut-off frequency w, : 

A = WI/C = 2rrllh = W/2@, = 0.5, 1.0,2.0, =‘, (64a) 

where the factor l/2 has been used so that A can be identified with the compactness 
parameter A = kl, where k = w/c is the ordinary wavenumber, as used commonly in wave 
scattering theory, to compare the wavelength A to lengthscale 1 of the duct. In the W.K.B.J. 
approximation, or ray limit, the cross-section varies slowly on the scale of a wavelength 
/\ ’ << I’, and the parameter (64a) is large, A’ >> I ; the opposite limit is ihe cut-off condition 
w = w,, when the non-uniform cross-section renders propagation impossible, and the 
parameter takes the minimum value A = l/2. The two other, intermediate values A = I, 2, 
given in expression (64a), of the compactness parameter, or dimensionless frequency, 
correspond to propagating waves for which the effects of variation of the cross-section 
of the ducts are considerable. 

Another, related dimensionless quantity is the ratio of the effective wavenumber K 
defined in expression (39b) to the ordinary wavenumber k = W/C.: 

6= Kc/w=~I-w~,/w2~“2=~l-l/(4A2)~“2=0~000,0~866,0~968, 1.000; (64b 1 

the effective wavenumber K embodies the effects of the cut-off frequency associated with 
the non-uniformity of the cross-section of the duct, unlike the ordinary wavenumber k, 
which refers to plane waves in free space or in a uniform tube. It would be possible to 
define a propagating compactness Kl, which unlike expression (64a) vanishes at the 
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Figure 1. Propagation of the fundamental, longitudinal acoustic mode in the (a) sech-horn and (b) csch-baffle, 
described by plotting against dimensionless axial coordinate x 5 z/2/ acoustic and geometric variables, rendered 
dimensionless by dividing either by asymptotic values (subscript 03) or by initial values (subscript 0). the latter 
at station z = 0 for the sech-horn, and x, = zo/ I = I .76 for the csch-baffles. Top left, cross-section Y - S/S,, and 
radius % = JY (axisymmetry assumed): top right, length scale Y- L/L, for cross-sectional variation L - S/S’ 
and ratio of amplitude of acoustic velocity at station z to initial value ‘%f= / V/ V,,j; centre left, primary pressure 
field 9, - Re (PlpcV,), in phase with velocity; centre right, secondary pressure held P1 - Im (P/pcV,,), out of 
phase with velocity; bottom left, total pressure field P - J(9”,)’ +(9J2, at station z divided by initial value for 
plane wave; bottom right, phase difference 9 = tan-‘(P,/P,) between pressure and velocity. The first two plots 
(top rows) are independent of frequency, and the last four (centre and bottom rows) include curves for four 
values of the dimensionless frequency A = 0.5, 1 .O, 2.0, ccl, corresponding, respectively, to the cut-off frequency 
o = w,, twice and four times this value w = 2w,, 4w,, and the ray limit w + co. 
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cut-off, and is related to A (64a) and S (64b) by Kl = A& The advantage of the dimensionless 
wavenumber (64b) when compared with the dimensionless frequency (64a) for propagating 
waves, is that the former has a much smaller range of variation 0 < 6 < 1 (than the latter 
O-5 < A <a) , with the cut-off condition corresponding to zero and the W.K.B.J. approxi- 
mation or ray limit to unity, the latter value being approached quickly for frequencies 
away from the cut-off. 

5.2. GEOMETRICAL AND ACOUSTIC PROPERTIES OF DUCTS 

The properties of the sech-horn and csch-baffle are illustrated, in Figures l(a) and (b), 
in terms of a number of dimensionless quantities, of both geometrical and acoustic nature, 
which are plotted as functions of the dimensionless longitudinal co-ordinate x = z/21 
(3 1 a). The cross-section, 

Y= S(z)/& = sech’ (z/21), csch’ (z/21), (65a, b) 

or, for an axisymmetric duct shape, the radius, 

%! = Y”‘= sech (z/21), csch (z/21), (66a, bl 

are made dimensionless by dividing by the values at the station z = 0 for the sech-horn 
and z0 = I.761 for the csch-baffle. The length scale (lOa) is negative because the ducts are 
convergent, and is plotted with reversed sign, 

T=-L,(z)/I=coth(z/21),tanh(z/21), (67a, b) 

and is normalized to the length parameter 1. 
The amplitude of the velocity perturbation spectrum (40a, b), for a wave of frequency 

o at the station z, is divided by the reference value V,(o): 

“1/‘= 1 V,(z; w > wv)/ VO(w)j = cash (z/21), sinh (z/21), (68a, b) 

with V, calculated at z = 0 for the sech-horn Vo(o)= V&(0; w > to,), and at the station 
z,/l= 1.76 for the sech-baffle V,(w) = V,(z,,; w > w,). The pressure field (41a, b) may be 
rendered dimensionless dividing by pcV,(w), and since it is generally out-of-phase with 
the velocity, it is decomposed into two parts, 

9, = Re{rP+(z; w > o,)/pcVo(w)} = S{cosh (z/21), sinh (z/21)}, (69a) 

~~~Im{P,(z;w>w,)/pcV,(w)}=(2A)~‘{sinhz/21),cosh(z/21)}, (69b) 

:Y’, being in-phase with the reference velocity V<,(w), and Yp2 out-of-phase by 7r/2. In 
both cases the upper/lower sign corresponds (45a, b) to propagation in the positive/nega- 
tive z (or x-) direction, respectively. 

The quantities (69a, b) specify the primary and secondary acoustic fields, corresponding, 
through P = SVZ, to the real and imaginary parts of the impedance Z = Z, +iZz, i.e., the 
resistance Z, and inductance Z,, of which 9, and 9, are the dimensionless counterparts. 
The primary and secondary acoustic fields add up to the total dimensionless pressure 
amplitude, 

.Y=IP*(z; w>w”)/pcv”(w)) ={(~,)2+(~p2)2}“2, (TOa, b) 

which coincides with the acoustic pressure perturbation spectrum for the non-uniform 
duct divided by its value for a plane wave in a tube of constant cross-section S,. The 
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relative importance of the primary :‘p, and secondary .P, acoustic fields measures, through 

Z=arg{P,(z;w>w,)-arg V,(z;w:,ww,)} 

= tan ’ [(246))‘{tanh (z/21), coth (z/21)}]. (7la. h) 

the phase difference between the pressure and velocity. 

5.3. PRIMARY AND SECONDARY ACOUSTIC‘ FIELDS 

The sets of six plots each in Figure l(a) for the sech-horn and in Figure l(b) for the 
csch-baffle, respectively, may be interpreted from left to right and top to bottom. In both 
cases (top left) the cross-section Y (65a, b) and radius %! (66a, b) show that the ducts 
converge exponentially on a length scale 1 for large distance z* >> I*, but for small coordinate 
z* << I* the sech-horn flares down smoothly to a finite area at z = 0, whereas the csch-baffle 
flares up to an infinite area, and the transition to its mirror image is not smooth. The 
length scale Y (67a, b) tends to a constant -1 for large distance z2 >> I’, and for smaller 
z increases due to the flare down of the sech-horn, to cn at z = 0 where the cross-section 
is constant to order 2*/l’, and decreases due to the flare up of the csch-baffle, to 0 as 
z + 0 (top right). The amplitude of the velocity 4’ ((68a, b); also top right) diverges for 
large z as the tube converges, and reduces for small z to a finite value for the sech-horn 
(of finite area) at z = 0, and to zero at z = 0 for the csch-baffle (of infinite area). 

The primary pressure field P, ((69a); center left) is uniformly zero at the cut-off, when 
the pressure is 90” out of phase to the velocity, and for propagating frequencies away 
from the cut-off it takes values close to the W.K.B.J. limit, increasing as the duct converges, 
from an initial value which is finite for the sech-horn and zero for the csch-baffle: i.e., 
evolves in a pattern similar to the velocity’s. The secondary pressure field BZ ((69b); 
center right) is zero in the ray limit, when the pressure is in phase with the velocity, and 
generally increases strongly as the frequency takes values near to the cut-off; it increases 
as the duct converges, from an initial value which is zero for the sech-horn, since the 
finite cross-section implies that pressure and velocity are initially in phase, and non-zero 
for the csch-baffle, since due to the infinite flare, the pressure and velocity start out of 
phase. The preceding differences in the behaviour of the primary and secondary pressure 
fields with regard to the frequency, with the former predominating towards the ray limit 
(propagating plane wave) and the latter towards the cut-off condition (non-oscillating 
modes), implies that the total pressure Y ((70a, b); bottom left) is not too sensitive to 
frequency; it increases as the duct converges, and is asymptotically independent of 
frequency, but initially it is larger for higher frequencies for the sech-horn, and larger 
for lower frequencies for the csch-baffle, since in the former/latter respectively for 
primary/secondary field predominates initially. 

The contrasts between the primary and secondary pressure affect the phase difference 
LS (71a, b) between pressure and velocity (bottom right) since (i) in both cases the phase 
difference vanishes in the W.K.B.J. approximation or ray limit equivalent to absence of 
reflections from the walls, and it takes the constant, uniform value 90” at the cut-off when 
propagation becomes impossible, (ii) for intermediate frequencies, the phase always starts 
at 0” for the sech-horn and at 90” for the csch-baffle, since for the former the finite, smooth 
initial cross-section implies that the velocity and pressure start in phase, whereas for the 
latter the infinite area implies that they start 90” out-of-phase, as modes in a cavity, (iii) 
the phase tends rapidly to (i.e., approaches in about three length scales z/l 3 3) the 
asymptotic value 0, - I = tan ’ (26A), which is the same both for the sech-horn and 
csch-baffle, and depends only on the ratio of wave to cut-off frequency, and (iv) the values 
8, = 30.0”, 14.5”, respectively, for frequencies twice and four times the cut-off frequency, 
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w = 2w,, 4w,, show that the asymptotic phase difference is larger the closer the frequency 
is to the cut-off, and that, moderately away from the cut-off, it approaches the W.K.B.J. 
or ray or in phase limit. 
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APPENDIX: LIST OF SYMBOLS 

sound speed 
ordinary wavenumber, k = 01 c 
constant length parameter for ducts with constant cut-off, (14) and (18a, b) 
acoustic pressure perturbation 
time 
acoustic velocity perturbation 
dimensionless co-ordinate, x = z/I 
co-ordinate along the axis of the horn 
station 21 sinh-’ (1) = I .761 
constants of integration 
velocity perturbation spectrum V(z; o) in terms of x 
reduced velocity W(z; o) in terms of x 
wave invariants for sound velocity and pressure, (8) and (9a, b) 
effective wavenumber, (39b) 
length scale for cross-sectional variation L - S/S’ 
acoustic pressure perturbation spectrum, (4a) 
initial pressure perturbation spectrumP(O; w) 
reduced acoustic pressure spectrum JS(z)P(z; o), (7a) 
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W(z; w) 
Z(z; w) 

; 

; 
P 
w 

cross-sectional area at station z 
initial cross-sectional area, or cross-sectional area at station z0 
acoustic velocity perturbation spectrum, (4b) 
initial velocity perturbation spectrum V(0; w) 
initial value of first, second derivative of velocity perturbation spectrum 
d”V(z; ~)/dz”lZ,,,, with n = 1,2 ~ 
reducQd acoustic velocity spectrum J.‘?(z) V(z: w), (7b) 
impedance P(z; w)/S(z)V(z, w) 
dimensionless wave invariant for catenoidal and inverse ducts (22a, b) 
dimensionless wave invariant for sinusoidal and inverse ducts (27a, b) 
parameter for standing modes 
dimensionless wavenumber, 6 - K/k, (64b) 
mean mass density 
wave frequency 
cut-off frequency for acoustic pressure, velocity 
dimensionless frequency, A = w/2w,, (64a) 
phase difference between acoustic pressure and velocity, (71a, b) 
minus the dimensionless length scale of cross-sectional variation, (67a, b) 
dimensionless amplitude of acoustic pressure, (70a, b) 
dimensionless pressure component in-phase/out-of-phase with velocity, (69a, b) 
dimensionless radius for axisymmetric ducts, (66a, b) 
dimensionless cross-section, (65a, b) 
dimensionless amplitude of acoustic velocity, (68a, b) 


