ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 97 (2011) 699-707

DOI 10.3813/AAA.918449

The Application of the Dual Surface Method to
Treat the Nonuniqueness in Solving Acoustic

Exterior Problems

A. Mohsen", R. Piscoya?, M. Ochmann?®

D Eng. Math. & Phys. Dept., Eng. Faculty, Cairo University, Giza 12211, Egypt
2 Beuth Hochschule fiir Technik, University of Applied Sciences, FB II, Research Group Computational
Acoustics, Berlin 13353, Germany. piscoya@beuth-hochschule.de

Summary

The problem of nonuniqueness (NU) of the solution of exterior acoustic problems via boundary integral equations
(BIEs) is studied. The application of the dual surface method, used in electromagnetic problems, to exterior

acoustic problems is studied. The dual surface integral equations, although identical in form and comparable

in complexity to the original surface integral equations, provide a unique solution at all real frequencies. The

conditions and the proof of uniqueness are outlined. Applications of the method are given for the scattering as

well as the radiation from three different structures. We consider normalized frequencies up to ka ~ 22, where

“a” is a typical dimension of the structure.

PACS no. 43.20.Fn, 43.40.Rj

1. Introduction

Surface integral equation (SIE) treatment of exterior acou-
stic problems reduces the dimension of the problem by one
and provides a direct implementation of the radiation and
boundary conditions. However, the solution of the SIEs is
not unique at internal resonances [1]. Methods to modify
or reformulate the solution procedures to insure unique-
ness over a range of wavenumbers or at all wavenum-
bers have been a topic of theoretical and practical inter-
est [2, 3, 4]. Some methods involve relatively more op-
erators which may take considerably more programming
and computer time or require a special procedure to handle
hypersingular integrals or to properly select the additional
equations.

In this paper an application of the Dual Surface (DS)
method [5, 6, 7, 8, 9] to acoustic radiation and scat-
tering problems is considered. Although the method has
been applied for quite some time in electromagnetics, it
is not cited in later computational acoustic publications
e.g. [2, 3, 4]. The method is here reintroduced in relation
to known conventional methods and then applied to some
acoustic radiation and scattering problems. The Dual Sur-
face Integral Equations (DSIEs) have the same form and
are comparable in complexity to the original SIE, it en-
sures a unique solution at all real frequencies. The condi-
tions and the proof of uniqueness, which are based on the
analysis of electromagnetic problems, are outlined.
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Tests are given for plane wave scattering by hard struc-
tures. Accurate results are obtained for normalized fre-
quencies up to ka ~ 20. For scattering by a soft sphere,
accurate results are also obtained using Fredholm integral
equations of the first and second kinds at frequencies near
internal resonances. Also the radiation from the vibrating
structures is considered and accurate results are obtained.

2. Integral representations of the solution

Let V; denote a bounded domain in three dimensions with
a boundary X which is a closed surface. We denote the
exterior of X by Vp. A suppressed time variation in the
form exp(—iwt) is assumed. It is convenient to introduce
the following notations:

S{¢} = J ¢(q) G(p. q) dsg, (1a)
z

D{¢} = L (q) 0ngG(p. 9) dsg, (1b)

K{p} = 0ngS{0}. (Ic)

M{¢} = 9,y D{¢}. (1d)

where 0, denotes outward normal derivative along n. Here
G = exp(ikR)/(4xR) is the free space Green’s func-
tion, R = |p — q| and p and q denote a field and a sur-
face point, respectively. S{.} and D{.} are the single and
double layer operators, respectively. We note that equa-
tion (1d) involves hypersingular integrands (0., D {¢} ~
I(I/R3)dsq).
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Let U denote the scalar potential, then applying Green’s
second identity, we get the Helmholtz integral Formula
(HIF) [10]:

U PeVy,
D{u} —S{u} =< c(p)u PeX )
0 PevV,

where u is the surface value of U, v = d,u and ¢(p) is given
by

c(p) = 1+J dp(1/R) ds,/(47). (2a)
p

Equation (2a) implies that the surface X may have a non-
smooth geometry at edges and corners. At smooth points,
c(p) =0.5.

Upon invoking the appropriate boundary condition, we
are led to an integral equation in the surface wave poten-
tial or its normal derivative. For the case of scattering of a
potential field U’ incident on a smooth X, we may write

U=U"+D{u} —S{v}. 3)

In the limit, this equation and its normal derivative yield
on X:

u/2 =u + D{u} — S{v}, 4
v/2=v 4+ M{u} — K{v}. (®))

Thus for soft scattering (u = 0) we have

v/2+ K{v) =V, (62)
S{v} =u, (6b)

while for hard scattering (v = 0), we have
u/2 — D{u} =u'. @)

The Interior Helmholtz Field Equations (IHFEs) are given
by

U+ D{u} - S{v} =0, (3)

where in D {u} and S {v} the field points lie in the interior.

3. The nonuniqueness problem

While the original boundary value problem has a unique
solution, the corresponding BIE may not be uniquely solv-
able at certain values of the wavenumber corresponding to
the adjoint interior problem. This gives rise to analytical
complications and considerable difficulty in the numerical
treatment of the problem. While the integral equation fails
only at a discrete point set of wavenumbers, the approxi-
mating linear equations become ill-conditioned when k is
merely in the vicinity of a critical value. This is evident
in the problem of a hard sphere, where the nonuniqueness
effect is clearly evident at ka = 22.602 which is not at,
but close to, the resonant frequencies. Under these condi-
tions, severe loss of accuracy will be experienced. As the
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wavenumber k increases, so also does the density of crit-
ical values, and hence it becomes increasingly difficult to
get an accurate solution.

The uniqueness of the solutions to the above equations
was thoroughly discussed by Burton [1]. Thus the solution
of (6a) is not unique if k € {ky}, where {kx} is the set
of eigenvalues for the interior Neumann problem. At these
wavenumbers the homogeneous equation adjoint to (6a)
has nontrivial solutions. On the other hand, the solutions of
(6b) and (7) are not unique when k € {kp}, where {kp}
is the set of eigenvalues of the interior Dirichlet problem.

The NU problem may be detected via calculating the
pivot ratio in Gauss elimination [11], monitoring the con-
dition number of the resulting matrix [12], evaluating the
minimum SVD [13] or testing the level of interior fields
[10].

Several approaches have been devised for surmount-
ing these defects and they are discussed in [2, 3, 4], [14]
with references to previous contributions. These methods
include the Burton and Miller (B&M) (composite, com-
bined, Helmholtz Gradient) field formulation, the com-
bined source (mixed potential, modified Green’s function)
method, the use of interior Helmholtz integral relations
and the source simulation (wave superposition, method of
fundamental solutions) technique. Some methods involve
more operators which may take considerably more pro-
gramming and computer time or require a special proce-
dure to handle hypersingular integrals or select the proper
additional equations.

In the present work, the application of the Dual Sur-
face (DS) method [5, 6, 7, 8, 9], used in electromag-
netic problems, to exterior acoustic problems is consid-
ered. The Dual Surface Integral Equations (DSIEs), ensure
the uniqueness of the solution while maintaining the sim-
plicity of the original SIE. The conditions and the proof
of uniqueness follow from the electromagnetic case and
are outlined. The method is presented next in relation
to the combined Helmbholtz integral equation formulation
(CHIEF) [15] and the Burton and Miller (B&M) method
[16].

4. The CHIEF, Burton-Miller and the dual
surface methods

The two main conventional techniques that have been ap-
plied to exterior acoustic problems in order to avoid the
NU problem are CHIEF and B&M methods.

In CHIEEF, the SIEs (equations 4 or 5) are augmented by
imposing some IHFEs (equation 8) at properly selected
interior points. The uniqueness requires that the interior
points (CHIEF points) do not lie on internal nodal sur-
faces. The resulting overdetermined system can then be
solved using a least squares [15] or Lagrange multipliers
[17] techniques. Various modifications and improvements
have been proposed e.g. [18, 19, 20] mainly to ensure
uniqueness in spite of the restriction imposed on interior
points.
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Figure 1. Finite element models of the test objects. Left: axisymmetric sphere; middle: cube; right: cat’s eye.

In the B&M method, one uses a complex linear combi-
nation of the SIEs (4) and (5)

u/2 = D{u) — yM (u)
+S{(v}+y(v/2+ K{v}) = u +pV'.

A rigorous proof of the existence and uniqueness of this
approach was given by Lin [21]. Uniqueness of the solu-
tion requires that the coupling parameter y has a non-zero
imaginary part. A study of the choice of the coupling pa-
rameter was given by Amini [22]. However, the differen-
tiation may introduce a strongly singular integral which
must be regularized for the equations to be amenable to
numerical solution. Several improvements have been in-
troduced, particularly to treat the introduced hypersingu-
larity e.g. [23, 24, 25] or to avoid it completely by applying
B&M equations on an interior surface [26].

Previous comparisons between CHIEF and B&M in-
clude Amini and Harris [14] and Marburg and Amini [4].
Each method has its own advantages and disadvantages. In
particular, the CHIEF is relatively simple but requires the
careful search for non-nodal interior points and the treat-
ment of the resulting overdetermined system of equations.
The B&M method on the other hand, maintains a square
matrix form but requires the careful treatment of the intro-
duced hypersingularity.

The method of Dual Surface Integral Equations (DSIEs)
preserves the advantage of the simplicity of CHIEF and
specifies the recommended location of the interior points
to ensure uniqueness. Thus, the method adds the IHFEs
(equation 8) on an appropriately located interior surface
S close to X constructed at a distance 6 along the normal
to the surface, to the SIEs (equation 4 or 5) with a purely
imaginary factor « to ensure the uniqueness.

u/2 — D{u} —aD{u} + S{v} +aS{v} =u' +aU’,
or v/24+K{v}+aS{v}—-M{u} —aD{u} = Vi+aU'

The resulting system of equations avoids the hypersingu-
larities of B&M while preserving its square matrix form.
Complex coupling parameters related to different inte-
gral solutions of the Helmholtz equation were first intro-
duced in Panich [27], Brackage and Werner [28] and Leis

[29] and used in B&M [16]. The use of auxiliary inte-
rior surfaces is known for example in the source simula-
tion technique (wave superposition, method of fundamen-
tal solution) [30], CHI method due to Cunefare et al. [26]
to avoid the B&M hypersingularity and the off boundary
method by Achenbach et al. [31]. More recently, the Neu-
mann problem was formulated in terms of single layer po-
tential on both the obstacle and an interior surface thus
avoiding the introduction of hypersingularity [32, 33, 34].
In the ICA-RING method [35], the scatterer is hollowed as
a shell thus shifting the eigenfrequencies to a higher range.

The proof of the uniqueness of the solution follows the
proofs given in [5] and [7]. If we assume that there are two
solutions u; and u», then the difference u = u, —u; satisfies
Helmbholtz equation in the interior and equal zero on both
2 and S provided that « is imaginary. Taking 6 to be less
than A/2, i.e. k6 < =, will ensure that the cavity formed
by Z and .S cannot support any resonant modes. Hence u
is zero and uniqueness is proved.

5. Application of the DSIE method

Next we present some applications of the DSIE method to
selected acoustic scattering and radiation problems. Three
objects are considered, a sphere, a cube and a “cat’s eye”.
The finite element models of these objects are shown in
Figure 1. Since @ and 6 are not uniquely defined in the
method, a parametric study was also performed.

5.1. Scattering and radiation of a sphere

For the scattering problem we consider a plane wave U’ =
exp(—ikz) incident along the axial direction on a hard and
a soft sphere of radius a and center at the origin. For the
radiation case, we compute the sound pressure of a pul-
sating sphere. We closely follow the treatment developed
in [18] for axisymmetric problems. The surface integrals
are reduced to one along the generating curve C. In this
case, the semicircle is discretized in a finite number of
segments and the integrals are performed numerically. To
ensure accurate results, the length of each segment is less
than a quarter wavelength. The numbering of the nodes
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Figure 2. Sound pressure at the surface (top) and at interior points
(bottom) of the rigid sphere.

starts from the top, i.e. the first node is placed at z = a and
the last one at 7z = —a.

For hard scattering (v = 0), equations (7) and (8) ac-
cording to the DSIE method yield

u/2—D{u} —aD{u} =u' +aU'". ©))

The internal resonances of the sphere are given by the ze-
ros of the Bessel functions and its derivatives. A list of
the zeros can be found in [36]. Numerical errors are ob-
served not only at the resonance value but also around it.
Employing the DS method, the solution for ka = 22.602
compared to the exact solution is shown in Figure 2. This
ka which lies in a resonance region exhibits the NU prob-
lem as can be seen from the very high axial interior fields.
Figure 2 shows the surface and axial interior fields before
(SIE) and after corrections (DSIE). Here k6 = 2.2 and
a = —i which satisfy the uniqueness requirements.

For soft scattering (1 = 0) using Fredholm integral
equation of the first kind, equation (6b) coupled to equa-
tion (8) yields

S{v} +aS{v} =u' +alU". (10)

Employing the DS method, the solution for ka = 20.983
compared to the exact solution is shown in Figure 3. The
figure also shows the axial interior fields before and after
corrections. Here k6 = 2.1 and a = —i.
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Figure 3. Sound pressure at the surface (top) and at interior points
(bottom) of the soft sphere.

For soft scattering using Fredholm integral equation of
the second kind, equation (6a) coupled to equation (8)
yields

v/2+ K{v}+aS{v} =v +aU'". (11)

Employing the DS method, the solution for the resonant
value ka = 22.602 compared to the exact solution is
shown in Figure 4. The figure also shows the axial inte-
rior fields before and after corrections. Here k6 = 2.2 and
a = ik which are consistent with the uniqueness as well as
the dimension requirements.

For the radiation problem for a specified surface distri-
bution v, the SIE is given by the Fredholm integral equa-
tion of the second kind,

—u/2 + D{u} = S{v}. (12)

When equation (12) is coupled to equation (8), the result
yields

—u/2 + D{u} + aD{u} = S{v} +aS{v}. (13)

In the numerical example, the pulsating sphere has a nor-
mal velocity v = 1. Employing the DS method, the so-
lution for ka = 20.983 compared to the exact solution is
shown in Figure 5. The figure also shows the axial inte-
rior fields before and after corrections. Here k6 = 2.1 and



Mohsen et al.: Application of dual surface method

ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 97 (2011)

2.51
..... SIE
- - -DSIE
2k = exact
ka=22.602
o 1.5¢
2
g
=% 1+
0.5 B
0 L — = = :/4
0 10 20 30 40
nodes
1.57
..... SIE
- - -DSIE
... ka=22.602
g *
2
g
&
0.5
\\///\:"{ x /'// \\\
0 R T T -
0 10 20 30 40
axial points

5 -
----- SIE
- - -DSIE
4 exact
o 3f
2
g ka=20.983
=9 27
| e ;.A
0 ‘ - L )
0 10 20 30 20
nodes
10
----- SIE
- - -DSIE
8 L
o 6f
2
&
~ L
4 ka=20.983 :
2l :
/ j\ -'
0 10 20 20 0
axial points

Figure 4. Sound pressure at the surface (top) and at interior points
(bottom) of the soft sphere.

a = —ika. This value of the coupling parameter a provides
a smaller interior field but smaller values of « also give a
good agreement for the surface pressure.

5.2. Scattering and radiation from a cube

We now examine the scattering and radiation of a cube in
a certain frequency interval. The three dimensional model
of a cube of sides @ = 1 m is considered. The surface el-
ements are squares of sides 0.1 m which assures at least 6
elements per wavelength up to 500 Hz. It is important to
choose an appropriate value for 6 that provides accurate
results over the whole interval.

For the scattering problem, again a plane wave travel-
ling in the (0,0, —1) direction is assumed and the cube
is rigid. Three different values of 6 are tested: a constant
value and two frequency-dependent values. The frequency
band between 200 Hz and 500 Hz (ka between 3.7 and 9.2)
is considered. The coupling parameter « is set to a = —i.

In Figure 6 we observe the pressure level of the for-
ward and backward scattered sound for the analyzed fre-
quency range. In this case, both waves have amplitudes of
the same order. Two irregular frequencies can be recog-
nized. The results of the DSIE are compared with the SIE
and the B&M method. The two peaks corresponding to
the irregular frequencies are eliminated by using the DSIE.
For all other frequencies, the results obtained with 6 = 0.1

Figure 5. Sound pressure at the surface (top) and at interior points
(bottom) of the pulsating sphere.

and 6 = A/8 are very close to the results of the SIE. The
B&M method shows a deviation of about 0.5 dB from the
SIE in the whole frequency range. For 6 = A/4, there are
some oscillations, especially with respect to the backward
wave. For the low frequencies, if /4 is chosen, the second
surface lies almost in the middle of the cube, which is not
an optimum configuration. But for higher frequencies, this
value should provide also good results.

The value of the coupling parameter is also tested with
this model. We took four values a« = —1, —2i, i and 2i for
6 = 0.1. Figure 7 shows that there are only very small
deviations between the results obtained with the different
coupling parameters.

Concerning the radiation problem, we assume that the
normal velocity at the surface of the cube is due to a dipole
located near the center of the cube (r;). The sound pres-
sure p,; and sound power W, of the dipole are given by the
expressions

Pa(P) = by (KIF = Fa) P{ (cos ),
2n
Wi= . 14
4 3pck? (14)

where h(ll)(x) is the spherical Bessel function of the first
kind and first order, PlO (x) is the associated Legendre func-
tion and y is the angle between (r — r;) and the z-axis.
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Figure 6. Scattered pressure obtained with the DSIE for different
values of 6. Top: forward scattering; bottom: backward scatter-

ing.

We evaluate the sound power produced by the vibrat-
ing surface of the cube and compare it to the sound power
of the dipole given in (14). For the DSIE, the distance of
the second surface is set to § = 1/8 and the coupling pa-
rameter to @ = —i. The result is compared to the SIE and
the B&M method as well. Figure 8 shows the good perfor-
mance of the DSIE, whose result differs minimally from
the exact solution.

5.3. Scattering and radiation of a cat’s eye

The DSIE approach is especially useful at high frequen-
cies where the density of interior resonances increases and
makes the application of the CHIEF method very diffi-
cult. In this example we move the frequency range towards
the high frequencies. The number of elements is also in-
creased to ensure accurate results, but a direct solver could
still be used. For even higher frequencies and finer dis-
cretization, iterative solvers need to be introduced (see for
example [37, 38, 39, 40]). The distance between the orig-
inal and second surface was 6 = A/8 and the coupling
parameter was a = —i.

For the scattering problem, an incident plane wave in the
direction (0, 0, —1) and a rigid surface are considered. The
wave strikes one of the plane surfaces perpendicularly. The
studied frequency range goes from ka = 10 to ka = 20.
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Figure 7. Scattered pressure obtained with the DSIE for different
values of a. Top: forward scattering; bottom: backward scatter-
ing.
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Figure 8. Sound power of the dipole obtained with the cube.

Figure 9 shows the spectral forward scattering and the spa-
tial distribution of the scattered wave at one of the irregular
frequencies.

The high density of interior resonances is evident. To
be able to detect them, the resolution along the ka-axis is
very fine, smaller than 0.02. The DSIE eliminates all the ir-
regular frequencies and provides a smooth curve. The dif-
ference between the DSIE and the B&M does not exceed
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Figure 9. Scattering from a rigid cat’s eye.

0.5 dB in the whole frequency range. The polar plot shows
the scattered pressure around the object at one irregular
frequency (ka = 16.5). The DSIE and B&M curves agree
very well while the SIE result is close in the forward and
backward lobes but differ at the side lobes.

For the radiation problem, again a dipole test is per-
formed. The spectral sound power and the directivity of the
sound pressure at one irregular frequency are illustrated in
Figure 10. The B&M and the DSIE methods provide very
good results. The typical eight-pattern of the dipole is very
well reproduced at ka = 13.2 whereas the SIE gives com-
pletely wrong results. The deviations from the analytical
power curve are minor.

6. Discussion

The problem of NU of the solution of acoustic problems
via BIEs is considered. We stress on the application of the
DSIE method to exterior radiation and scattering acoustic
problems. The DSIEs maintain the simplicity of the orig-
inal equations and provide a unique solution for all fre-
quencies as long as the coupling constant a is imaginary

Figure 10. Top: Sound power of the dipole obtained with the cat’s
eye, bottom: directivity pattern of the sound pressure level.

and the interior auxiliary surface is located at a distance
6 which is less than 4/2. The method avoids the introduc-
tion of hypersingular integrals as in the B&M method. The
method also solves the problem of how to choose the inte-
rior points in CHIEF besides avoiding the introduction of
an overdetermined system of equations.

We note that in [6, p.1400], it was pointed out that it is
not necessary for uniqueness of solution to keep the inner
surface at a fixed distance from Z as long as 6 is less than
A/2 and large enough that numerical errors in computing
the integrands are small. In practice, according to [6], it is
not even necessary to include the inner surface for every
observation point or to make the inner surface a continu-
ous one. This means that one can avoid any difficulty in
defining the inner surface for scatterers with complicated
shapes.

We demonstrated the validity of the method via applica-
tion to scattering and radiation by different objects. For the
axisymetric sphere, the problem was investigated at certain
frequencies. We chose ka = 22.602 which is a high fre-
quency located in a resonance region for the hard case. Al-
though the value is not a resonance one, the results exhibit
the common features of NU. Soft scattering was treated
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at this ka via Fredholm integral equations of the second
kind. For the soft case using Fredholm integral equation
of the first kind as well for the radiation problem we took
ka = 20.983. The effect of internal resonance is demon-
strated by the high value of the axial internal fields in these
cases. The significant reduction in these fields illustrates
the success of the method. For the 3D cube and the cat’s
eye, the acoustic responses were investigated for a broad
frequency range. It was found that a value of 6 = 1/8
and o = —i provided very good results for the entire fre-
quency range. At low frequencies, care must be taken to
avoid that the second surface lie too far from the original
surface, since the wave length may be large. For these two
cases, the interior field was not investigated. Other values
of 6 and @ may minimize the interior field, but for exterior
problems, that may be of minor importance.

It is important to note that the proof of uniqueness sets
the necessary conditions, namely, a complex value for a
and 6 < A/2 but do not provide unique values. For the
soft scattering using Fredholm integral equation of the first
kind as well as for hard scattering, @ was simply taken
equals to —i. For soft scattering using Fredholm integral
equation of the second kind « = ik was chosen to make
the dimension of the two added terms equal. However for
the radiation from a sphere @« = —ika was required to re-
duce the interior field. Further studies, mathematical or nu-
merical, are needed to find the most appropriate values for
a and 6 within the limits given by the uniqueness theory.
Similar previous studies for the coupling parameters were
conducted by Amini [22] and Kirkup [41].
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