
Finite conical horn
The matrix elements are given by

a11 ¼
ffiffiffiffiffiffiffi
SM

ST

r �
cos kl � 1

kxM
sin kl

�
(9.71)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sin kl (9.72)

25 cm 

Throat area 
ST = 58 cm2

Mouth area 
SM = 1210 cm2

STRAT/(ρ0c)

STXAT/(ρ0c)
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1
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Figure 9.10 Plot of normalized throat impedances for finite parabolic (1), conical (2), exponential (3),
and hyperbolic (4) horns using Eq. (9.64) and Eq. (13.116) for ZAM ¼ Zs/SM, assuming termination in an
infinite baffle. Real impedances STRAT/(r0c) are represented by solid curves and the imaginary im-
pedances STXAT/(r0c) are represented by dashed curves. The value of a for the hyperbolic horn is ½.
The cutoff frequencies of the parabolic, conical, exponential, and hyperbolic horns are 1182 Hz,
792 Hz, 337 Hz, and 399 Hz respectively.
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a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

��
1

kxM
� 1

kxT

�
cos kl þ

�
1þ 1

k2xMxT

�
sin kl

�
(9.73)

a22 ¼
ffiffiffiffiffiffiffi
ST

SM

r �
cos kl þ 1

kxT
sin kl

�
(9.74)

where ST is the area of the throat, SM is the area of the mouth, and the length l of the

horn from the throat to the mouth is given by l ¼ xM � xT, so that xT ¼ l/(
ffiffiffiffiffiffiffiffiffiffiffiffi
SMST

p � 1).

The throat impedance of a finite conical horn is plotted in Fig. 9.10.

Finite exponential horn [13]
The matrix elements are given by

a11 ¼
ffiffiffiffiffiffiffi
SM

ST

r
ðcosðkl cos qÞ � tan q sinðkl cos qÞÞ (9.75)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sec q sinðkl cos qÞ (9.76)

a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

sec q sinðkl cos qÞ (9.77)

a22 ¼
ffiffiffiffiffiffiffi
ST

SM

r
ðcosðkl cos qÞ þ tan q sinðkl cos qÞÞ (9.78)

where ST is the area of the throat, SM ¼ STe
ml is the area of the mouth, l is the length of

the horn from the throat to the mouth, and q ¼ arcsin(m/2k). The throat impedance of a

finite exponential horn is plotted in Fig. 9.10.

Finite hyperbolic horn
The matrix elements are given by

a11 ¼
ffiffiffiffiffiffiffi
SM

ST

r
ðcosðkl cos qÞ � b tan q sinðkl cos qÞÞ (9.79)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sec q sinðkl cos qÞ (9.80)
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a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

	ðb� aÞsin q cosðkl cos qÞ þ 	1þ ðab� 1Þsin2 q
sec q sinðkl cos qÞ

(9.81)

a22 ¼
ffiffiffiffiffiffiffi
ST

SM

r
ðcosðkl cos qÞ þ a tan q sinðkl cos qÞÞ (9.82)

where ST is the area of the throat,

SM ¼ ST ðcoshðl=xT Þ þ a sinhðl=xT ÞÞ2

is the area of the mouth, l is the length of the horn from the throat to the mouth, and

q ¼ arcsin(1/kxT). The quantity b is given by

b ¼
ffiffiffiffiffiffiffi
ST

SM

r
ðsinhðl=xT Þ þ a coshðl=xT ÞÞ. (9.83)

The throat impedance of a finite hyperbolic horn is plotted in Fig. 9.10.

Truncation effects
Whenever the bell diameter is not large or when the horn length is short, it is not

possible to use the infinite approximation for the throat impedance. Instead we must use

the exact equation of Eq. (9.64). However, we see from Fig. 9.10 that, for a given size

horn, the parabolic and conical horns are closer to the infinite ideal of Fig. 9.9 than are

the exponential and hyperbolic types. To illustrate what the words “large bell diameter”

and “long length” mean, let us refer to Fig. 9.11 for a finite exponential horn of various

sizes.

If the circumference of the mouth of the horn divided by the wavelength is less than

about 0.5 (i.e., the diameter of the mouth divided by the wavelength is less than about

0.16), the horn will resonate like a cylindrical tube, i.e., at multiples of that frequency

where the length is equal to a half wavelength. This condition is shown clearly by the two

lower-frequency resonances in Fig. 9.11a.

When the circumference of the mouth of the horn divided by the wavelength is

greater than about 3 (i.e., diameter divided by wavelength greater than about 1.0), the

horn acts nearly like an infinite horn. This is shown clearly by comparison of c and d of

Fig. 9.11, for the region where f/fc is greater than about 2, which is the case where the

ratio of mouth diameter to wavelength exceeds 0.5.

In the frequency region where the circumference of the mouth to wavelength ratio

lies between about 1 and 3, the exact equation for a finite exponential horn (Eq. (3.49))

must be used, or the results may be estimated from a and b of Fig. 9.11.
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Figure 9.11 Graphs showing the variation in specific acoustic impedance at the throat of four
exponential horns as a function of frequency with bell diameter as the parameter. The cutoff frequency
fc ¼ mc/4p and the throat diameter ¼ 0.03 c/fc; both are held constant. Bell circumferences are (a)
C ¼ 0.314lc, (b) C ¼ 0.628lc, (c) C ¼ 0.942lc, and (d) C ¼ N. The mouth of the horn is assumed to be
terminated in an infinite baffle.
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When the length of the horn becomes less than one-quarter wavelength, it may be

treated as a simple discontinuity of area such as was discussed in Section 4.8 (pp. 131 to

133).

Obviously, if one chooses a certain mouth area and a throat area to obtain maximum

efficiency, the length of the horn is automatically set by the flare constant m, which is in

turn directly dependent on the desired cutoff frequency.

Nonlinear distortion
A sound wave produces an expansion and a compression of the air in which it is traveling.

We find from Eq. (2.6) that the relation between the pressure and the volume of a small

“box” of the air at 20�C through which a sound wave is passing is

P ¼ 0.726

V 1.4
(9.84)

where

V is specific volume of air in m3/kg ¼ 1/r0
P is absolute pressure in bars, where 1 bar ¼ 105 Pa

This equation is plotted as curve AB in Fig. 9.12.

Assuming that the displacement of the diaphragm of the drive unit is sinusoidal, it acts

to change the volume of air near it sinusoidally. For large changes in volume, the pressure

built up in the throat of the horn is no longer sinusoidal, as can be seen from Fig. 9.12.

The pressure wave so generated travels away from the throat toward the mouth.

If the horn were simply a long cylindrical pipe, the distortion would increase the

distance the wave progressed according to the formula (air assumed) [14,15]

p2

p1
¼ gþ 1

2
ffiffiffi
2

p
g
k
p1

P0
x ¼ 1.21k

p1

P0
x (9.85)

where

p1 is rms sound pressure of the fundamental frequency in Pa.

p2 is rms sound pressure of the second harmonic in Pa.

P0 is atmospheric pressure in Pa.

k ¼ u/c ¼ 2p/l is wave number in m�1.

g ¼ 1.4 for air.

x is distance the wave has traveled along the cylindrical tube in m.

Eq. (9.85) breaks down when the second-harmonic distortion becomes large, and a

more complicated expression, not given here, must be used.

In the case of an exponential horn, the amplitude of the fundamental decreases as the

wave travels away from the throat, so that the second-harmonic distortion does not

increase linearly with distance. Near the throat it increases about that given by Eq. (9.85),
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but near the mouth the pressure amplitude of the fundamental is usually so low that very

little additional distortion occurs.

The distortion introduced into a sound wave after it has traveled a distance x down an

exponential horn for the case of a constant power supplied to unit area of the throat is

found as follows:

1. Differentiate both sides of Eq. (9.85) with respect to x, so as to obtain the rate of

change in p2 with x for a constant p1. Call this Eq. (9.85a).

2. In Eq. (9.85a), substitute for p1 the pressure pTe
�mx/2, where pT is the rms pressure of

the fundamental at the throat of the horn in Pa and m is the flare constant.

3. Then let pT ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ITr0c;

p
where IT is the intensity of the sound at the throat in W/m2

and r0c is the characteristic acoustic impedance of air in rayls.

4. Integrate both sides of the resulting equation with respect to x.

P = Absolute pressure in bars 
V = Specific volume 

    = 1/ρ0 in m3/kg 

 = 1.403

t

A

BV0

P0
t

γ

Figure 9.12 Plot of the gas equation PVg ¼ 1.26 � 104, valid at 20�C. Normal atmospheric pressure
(0.76 m Hg) is shown as P0 ¼ 1 bar.
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This yields:

percent second� harmonic distortion ¼ 50ðgþ 1Þ
gP0

ffiffiffiffiffiffiffiffiffiffiffi
ITr0c

2

r
f

fc

�
1� e�mx=2

�
: (9.86)

For an infinitely long exponential horn, at normal atmospheric pressure and tem-

perature, the equation for the total distortion introduced into a wave that starts off

sinusoidally at the throat is

Percent second� harmonic distortion ¼ 1.22
f

fc

ffiffiffiffiffi
IT

p � 10�2 (9.87)

where

f is driving frequency in Hz.

fc is cutoff frequency in Hz.

IT is intensity in W/m2 at the throat of the horn.

Eq. (9.87) is shown plotted in Fig. 9.13. Actually, this equation is nearly correct for finite

horns because most of the distortion occurs near the throat.

Eq. (9.87) reveals that, for minimum distortion, the cutoff frequency fc should be as

large as possible, which in turn means as large a flare constant as possible. In other words,

the horn should flare out rapidly to reduce the intensity rapidly as one travels along the

horn toward the mouth.

Unfortunately, a high cutoff frequency is not a feasible solution for horns that are

designed to operate over a wide frequency range. In this case, it is necessary to operate

the horn at low power at the higher frequencies if the distortion is to be low at these

Figure 9.13 Percentage second-harmonic distortion in an exponential horn as a function of the in-
tensity at the horn throat with the ratio of the frequency to the cutoff frequency as parameter.
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frequencies. This goal is achieved automatically to some extent in reproducing speech

and music because above 1000 Hz the intensity for these sounds decreases by about a

factor of 10 for each doubling of frequency.
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