LM7809 & LM7909 SPICE MODELS

  • IMPORTANT! Updated: 04/04/2023 11 A.M.PST

  • These are fully functional Spice Models of the LM7809 (+9V) & LM7909 (-9V) Voltage Regulators based upon the LM317 & LM337 Spice.
  • By adjusting the value of of the "RADJ" resistor one can simulate the entire LM78xx & LM79xx series of Voltage Regulators.

  • ==========
  • * LM7809
  • *
  • * SPICE (Simulation Program with Integrated Circuit Emphasis)
  • * SUBCIRCUIT
  • *
  • * Connections: In Gnd Out
  • .SUBCKT LM7809 1 2 3
  • RBIAS 40 3 220
  • RADJ 2 40 1365
  • D4 4 3 D_Z6V0
  • D3 5 6 D_Z6V3
  • D2 7 1 D_Z6V3
  • D1 3 8 D_Z6V3
  • QT26 1 10 9 Q_NPN 20.0
  • QT25 1 11 10 Q_NPN 2.0
  • QT24_2 13 12 5 Q_NPN 0.1
  • QT24 13 12 14 Q_NPN 0.1
  • QT23 17 16 15 Q_NPN 1.0
  • QT21 19 18 3 Q_NPN 0.1
  • QT19 21 3 20 Q_NPN 1.0
  • QT17 23 3 22 Q_NPN 0.1
  • QT13 1 25 24 Q_NPN 0.1
  • QT11 16 27 26 Q_NPN 0.1
  • QT7 30 29 28 Q_NPN 0.1
  • QT5 29 31 3 Q_NPN 0.1
  • QT3 33 31 32 Q_NPN 0.1
  • QT22_2 17 17 1 Q_PNP 1.0
  • QT22 16 17 1 Q_PNP 1.0
  • QT20 3 19 16 Q_PNP 0.1
  • QT18 21 21 16 Q_PNP 0.1
  • QT16 23 21 16 Q_PNP 0.1
  • QT15 3 23 25 Q_PNP 0.1
  • QT12 3 24 16 Q_PNP 0.1
  • QT9 27 30 34 Q_PNP 0.1
  • QT6 3 29 34 Q_PNP 0.1
  • QT14 25 33 35 Q_PNP 0.1
  • QT10 16 33 36 Q_PNP 0.1
  • QT8 34 33 37 Q_PNP 0.1
  • QT4 31 33 38 Q_PNP 0.1
  • QT2 33 33 39 Q_PNP 0.1
  • R27 4 40 50
  • R26 9 3 100M
  • R25 9 14 2
  • R24 5 14 160
  • R23 7 6 18K
  • R22 10 3 160
  • R21 12 13 400
  • R20 18 13 13K
  • R19 16 11 370
  • R18 15 10 130
  • R17 16 12 12K
  • C3 19 18 5P
  • R16 16 19 6.7K
  • R15 20 22 2.4K
  • R14 22 4 12K
  • C2 23 4 30P
  • C1 23 3 30P
  • R13 24 3 5.1K
  • R12 26 3 72
  • R11 27 3 5.8K
  • R10 28 3 4.1K
  • R9 32 3 180
  • R8 34 30 12.4K
  • R7 31 29 130
  • R6 8 31 100K
  • R5 1 35 5.6K
  • R4 1 36 82
  • R3 1 37 190
  • R2 1 38 310
  • R1 1 39 310
  • JT1 1 3 8 J_N
  • .MODEL D_Z6V0 D(IS=10F N=1.04 BV=6.0 IBV=1M CJO = 1P TT = 10p)
  • .MODEL D_Z6V3 D(IS=10F N=1.04 BV=6.3 IBV=1M CJO = 1P TT = 10p)
  • .MODEL Q_NPN NPN(IS=10F NF=1.04 NR=1.04 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=90)
  • .MODEL Q_PNP PNP(IS=10F NF=1.04 NR=1.04 BF=50 CJC=1P CJE=2P TF=10P TR=1N VAF=45)
  • .MODEL J_N NJF(VTO=-7)
  • .ENDS
  • ==========
  • ==========
  • * LM7909
  • *
  • * SPICE (Simulation Program with Integrated Circuit Emphasis)
  • * SUBCIRCUIT
  • *
  • * Connections: In Gnd Out
  • .SUBCKT LM7909 1 2 3
  • RBIAS 55 3 220
  • RADJ 2 55 1365
  • QTU37 4 5 3 Q_PNP_0 1.000
  • QTU36 6 5 3 Q_PNP_0 1.000
  • QTU35 7 5 3 Q_PNP_0 1.000
  • QTU29 8 8 9 Q_PNP_0 1.000
  • QTU28 10 8 9 Q_PNP_0 1.000
  • QTU33 5 11 3 Q_PNP_0 1.000
  • DD3 12 13 D_D_0
  • DD6 14 15 D_6V3_0
  • DD2 16 3 D_6V3_1
  • DD5 3 17 D_D_1
  • DD1 3 18 D_D_2
  • DD4 3 19 D_D_1
  • QTU43 20 22 21 Q_PNP_1 1.000
  • QTU40 23 24 7 Q_PNP_0 1.000
  • QTU39 1 25 7 Q_PNP_0 1.000
  • QTU41 21 27 26 Q_PNP_1 1.000
  • QTU34 28 5 3 Q_PNP_0 1.000
  • QTU32 29 11 3 Q_PNP_0 1.000
  • QTU38 30 3 13 Q_PNP_2 0.09000
  • QTU31 31 8 32 Q_PNP_0 1.000
  • QTU30 8 8 32 Q_PNP_0 1.000
  • QTU19 33 34 14 Q_NPN_0 1.000
  • QTU20 33 34 35 Q_NPN_0 1.000
  • QTU16 22 36 1 Q_NPN_0 1.000
  • QTU17 27 37 20 Q_NPN_0 1.000
  • QTU15 21 37 38 Q_NPN_0 1.000
  • QTU14 8 37 39 Q_NPN_0 1.000
  • QTU13 17 37 40 Q_NPN_0 1.000
  • QTU9 21 4 1 Q_NPN_0 1.000
  • QTU8 4 6 1 Q_NPN_0 1.000
  • QTU7 6 23 1 Q_NPN_0 1.000
  • QTU6 24 25 41 Q_NPN_0 1.000
  • QTU5 25 42 1 Q_NPN_0 1.000
  • QTU4 29 42 43 Q_NPN_0 1.000
  • QTU22 3 45 44 Q_NPN_1 10.0
  • QTU21 3 46 45 Q_NPN_2 3.000
  • QTU23 3 47 27 Q_NPN_0 1.000
  • QTU12 30 31 17 Q_NPN_0 1.000
  • QTU11 31 10 17 Q_NPN_0 1.000
  • QTU10 10 10 17 Q_NPN_0 1.000
  • QTU3 5 28 29 Q_NPN_0 1.000
  • QTU2 19 48 32 Q_NPN_0 1.000
  • QTU1 19 49 9 Q_NPN_0 1.000
  • R37 36 33 15K
  • R36 16 15 18K
  • R35 15 14 100K
  • R34 35 50 10
  • R33 14 35 150
  • R32 51 34 12K
  • C5 33 34 2P
  • R31 51 33 390
  • R30 21 51 12K
  • C4 22 36 5P
  • R29 21 22 6.8K
  • R28 20 1 500
  • R27 40 39 6K
  • R26 38 1 2.4K
  • R25 40 1 500
  • R24 50 1 40M
  • R23 4 52 20K
  • R22 52 1 4K
  • R21 23 52 8K
  • R20 41 1 4.2K
  • R19 7 24 12K
  • R18 43 1 600
  • R17 42 25 270
  • R16 37 42 1K
  • R15 28 37 4K
  • R14 11 5 750
  • R13 5 18 60K
  • R12 18 16 100K
  • R11 44 50 200M
  • R10 45 44 250
  • R9 21 46 100
  • R8 31 53 5K
  • C3 53 30 15P
  • C2 48 30 15P
  • R7 3 26 220
  • R6 30 47 2K
  • R5 54 47 800
  • C1 3 54 25P
  • R4 55 19 60
  • R3 48 12 20K
  • R2 19 48 2K
  • R1 19 49 2K
  • .MODEL Q_PNP_0 PNP(IS=10F NF=1.04 NR=1.04 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=45)
  • .MODEL D_D_0 D(IS=1F N=1.14 CJO=1P TT=10p)
  • .MODEL D_6V3_0 D(IS=10F N=1.04 BV=6.3 IBV=1M CJO=1P TT=10p)
  • .MODEL D_6V3_1 D(IS=10F N=1.04 BV=6.3 IBV=1M CJO=1P TT=10p)
  • .MODEL D_D_1 D(IS=1F N=1.16 CJO=1P TT=10p)
  • .MODEL D_D_2 D(IS=1F N=1.16 CJO=1P TT=10p)
  • .MODEL Q_PNP_1 PNP(IS=10F NF=1.04 NR=1.04 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=45)
  • .MODEL Q_PNP_2 PNP(IS=10F NF=1.14 NR=1.14 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=45)
  • .MODEL Q_NPN_0 NPN(IS=10F NF=1.04 NR=1.04 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=90)
  • .MODEL Q_NPN_1 NPN(IS=10F NF=1.04 NR=1.04 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=90)
  • .MODEL Q_NPN_2 NPN(IS=10F NF=1.04 NR=1.04 BF=100 CJC=1P CJE=2P TF=10P TR=1N VAF=90)
  • .ENDS
  • ==========
 
Last edited:
THIS IS A SCHEMATIC WITH SIMULATION RUN OUTPUT VOLTAGES +-9.06VDC UTILIZING THE ABOVE SPICE MODELS.
VOLTAGE IS DETERMINED BY VARYING "RADJ" IN THE SPICE MODELS ( SHOWN HERE AS 1365 OHMS FOR APPROX. +-9VDC).
IMPORTANT!
SCHEMATIC "FOOTPRINT PINOUTS" FOR THE LM78xx and LM79xx SERIES VOLTAGE REGULATORS ARE ASSIGNED TO MATCH TO220 TRANSISTOR
EQUIVALENTS.:
LM78xx IN=1 GND=2 OUT=3
LM79xx IN=2 GND=1 OUT=3
duopwrsupply.jpg
 
Last edited:
Since these LM78xx and LM79xx Spice Models are completely based upon the
LM317/LM337 Design both RADJ and RBIAS can be varied according the established formulas for same.
Where:
External Resistor R1 = Internal Resistor RBIAS
External Resistor R2 = Internal Resistor RADJ

for LM317/LM337 Formulae

Vout = 1.25V x (1 + RADJ/RBIAS)
Therefore:
RADJ = RBIAS x ((Vout - 1.25V)/1.25V)

9 VOLT EXAMPLE:
Vout = 1.25V x (1 + 1365/220) = 9V
Therefore:
RADJ = 220 x ((9V - 1.25V)/1.25V) = 1365

This Spice Modeling Method creates both
Positive and Negative
Internally Adjustable 3-Pin Regulators
to provide the full range of LM78xx and LM79cxx
Voltage Regulators.
Prior to this implementation there were only
+-12VDC and +-15VDC Regulator Spice Models Available.

I examined the node connections and values of the 317/337
original spice models and discovered that in both instances the
'ground/adjust' pin was connected to only one other node in the
Spice coding. The other end of it was the open external designated
connection of the 3-pin subcircuit definition code.
I simply renamed that node to one higher number
in the model hierarchy and then added the
two necessary resistors connected as a standard 317/337
voltage adjustable spice model and achieved what
we have all wanted for 30 years.
LM7809 and LM7909..
As well as being able to emulate the entire LM78xx and LM79xx series.

Also, they are internally variable 3-pin versions of the LM317/LM337
reducing the need for the 4 extra resistors on a densely populated PC Board.
 
Last edited:
WE ALL REALLY DESIRE TO HAVE DIYAUDIO ALLOW US A LITTLE MORE TIME LENIENCY TOI AVOID 'TYPOS'
EVERYONE KNOWS IT IS NECESSARY TO 'POST' AND THEN EXAMINE FROM A SPECTATOR VIEWPOINT.
PLEASE DISREGARD THE 2 PREVIOUS SCHEMATIC VOLTAGE LISTING MISMATCHES.
NO ANIMOSITY TOWARDS MEMBERS/MODERATORS/ADMINISTRATORS INTENDED.
IT IS USUALLY THE 'TIMEOUT' FORMAT OF FORUM PROVIDER WEB PAGE DESIGN.
duopwrsupply.jpg